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Abstract: Dynamical systems like the one described by the three-variable Lorenz-63 model may
serve as metaphors for complex natural systems such as climate systems. When these systems are
perturbed by external forcing factors, they tend to relax back to their equilibrium conditions after the
forcing has shut off. Here we investigate the behavior of such transients in the Lorenz-63 model by
studying its trajectories initialized far away from the asymptotic attractor. Counterintuitively, these
transient trajectories exhibit complex routes and, in particular, the sensitivity to initial conditions is
akin to that of the asymptotic behavior on the attractor. Thus, similar extreme events may lead to
widely different variations before the perturbed system returns back to its statistical equilibrium.

Keywords: Lorenz model; climate; transient behavior

1. Introduction

The by now famous Lorenz-63 system [1] (hereafter, simply the Lorenz system or the
Lorenz model), which arises via a truncation of Saltzman’s equations [2] for convective
motion—a paramount feature in climate—is described by the following system of ordinary
differential equations:

.
x = −σx + σy,
.
y = −xz + rx− hy,
.
z = xy− bz.

(1)

Here the dot denotes the time derivative, while the parameters σ and r correspond to
the Rayleigh and Prandtl numbers, respectively. The choice of parameters σ = 10, r = 28,
h = 1, and b = 8/3 results in asymptotic (statistically equilibrated) aperiodic behavior on a
strange attractor, with smooth trajectories alternating irregularly between loops around
one of the two nontrivial unstable equilibrium points. In the original work by Lorenz, the
parameter h in (1) was never varied; we introduced it here to aid a qualitative discussion of
the transient behavior for the reasons that will become more apparent in Section 3. The
topological structure and properties of the Lorenz attractor have been investigated and
reported in a plethora of papers and books since the mid-1970s (see, for example, [3]).

Because of the great interest in the structural details of this—and other—chaotic attrac-
tors, their numerical simulations are usually initialized near the attractor itself. In this case
the transients, defined as phase-space trajectories connecting the initial condition and the
attractor, are short and uninteresting [4]. Less attention thus far was, however, paid to the
transient behavior in situations when the Lorenz system is numerically integrated from the
states located far from its asymptotic attractor. Investigating such transients is important
because extreme far-from-equilibrium events do occur in nature due to either external
forcing factors or due to self-amplifying interactions between various subcomponents of
complex natural systems. Examples of the two types of phenomena in climate include the
response of the climate system to forcing associated with volcanic aerosols and climate
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adjustment to particularly strong internal events associated with El Niño/Southern Oscil-
lation, respectively; see [5] for a topical account of other important climatic interactions.
The purpose of this note is to point out some interesting properties of post-extreme-event
transients in the Lorenz model.

2. Duration of Transients and Its Relationship to Trajectory-Averaged Local
Stability Multipliers

Asymptotically, as time t→ ∞ , trajectories of the model (1) are confined within a
bounded region B of the (x, y, z) phase space [5]. Here we objectively defined region B
numerically, as a rectangular cuboid with x-, y-, and z-ranges based on maximum and
minimum values of the corresponding variables from a long model simulation initialized
on the attractor; these ranges are (–20, 20), (–27, 27), and (0, 48.5), respectively. We also
defined the approximate center of the attractor as the long-term time mean of (x, y, z)
from the same simulation: the point (0, 0, 24). We then performed numerical simulations
of transient behavior in the Lorenz system (1) using a set of extreme initial conditions
equidistant from the attractor center so computed and thus located on a sphere S with
the radius a = 150; these initial conditions are all well beyond the attractor region B. The
transients were defined as trajectories emanating from the sphere S and followed until their
first entry into the region B. In most simulations, the system (1) was numerically integrated
in time using the simplest Euler scheme with the time step ∆t = 0.001. In select cases, we
confirmed our results with a much smaller time step of 0.0001 (not shown), which indicates
that the dynamics we discuss here are not the artefacts of our numerical procedure.

The first characteristic of the Lorenz-system transients we looked at was their duration
(Figure 1) defined as the time it takes for a transient trajectory initialized on the sphere S
to reach the region B. A typical time scale associated with a single revolution of a model
trajectory on the butterfly-shaped asymptotic attractor about either lobe of this attractor for
our choice of model parameters is on the order of unity (not shown). This also happens to
be the duration of the longest transients for initial conditions on the sphere S; the fastest
transients take as short as 0.2 time units to reach the attractor region B, while the mean
duration of transients is around 0.6 time units. The most striking property of the transient
times distribution is, however, its non-uniformity and, in particular, the presence of two
“blue” regions of initial conditions leading to extremely short-duration transient trajectories,
as well as the presence of a relatively narrow “red” spiral belt of the initial conditions
corresponding to the trajectories with the longest transient-period durations.

We will see later that longer-duration transient trajectories are also the ones that exhibit
the most interesting evolution. We found that a useful diagnostic for a potentially complex
transient behavior can be obtained by computing the trajectory-averaged maximum local
stability multipliers Λmax [6] defined as the leading eigenvalue of the dynamical operator
L for the tangent-linear model that describes the local spread of trajectories of our original
model (1) in the close neighborhood of an arbitrary point (x0, y0, z0) in the system’s
phase space: 

.
δx

.
δy

.
δz

 = L

 δx
δy
δz

; L =

 −σ
−z0 + r
−y0

σ
−1
x0

0
−x0
−b

 (2)

We computed Λmax for all points along each transient trajectory between the sphere S and
the asymptotic attractor region B and took an average of these values to characterize a given
trajectory (Figure 2). Interestingly, a large fraction of initial conditions on the sphere S are
characterized by the positive average local stability multipliers obtained, thereby indicating
potential sensitivity to initial conditions, which we will indeed confirm in Section 3 below.
Furthermore, there is a clear correspondence between the pattern of trajectory-averaged
local stability multipliers in Figure 2 and that of the transient duration in Figure 1. In
particular, the “blue” regions on the sphere S that initialize the transients with fastest decay
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toward the asymptotic attractor are also the regions with negative average local stability
multipliers, while the “red” ribbon of initial states corresponding to the longest transients
is also the region of the maximum positive trajectory-averaged local stability multipliers;
using the finite-time Lyapunov exponents [7,8] (by estimating eigenvalues of the strain
tensor JTJ, where J is the finite-time Jacobian matrix whose evolution satisfies the tangent
linear equations) to tag the trajectories produces essentially identical results (not shown).
Thus, the longest transients are naturally associated with trajectories that tend to “travel
sideways” along the dynamical slopes of the Lorenz-system “global” landscape, rather
than going straight downhill toward the asymptotic attractor.
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Figure 1. Distribution of transient times (color shading) to the Lorenz attractor for initial conditions on the sphere S with
the radius a = 150 centered at the point (0, 0, 24); the center of this sphere was chosen to be close to the asymptotic time
mean of trajectories simulated by the Lorenz model (1) with σ = 10, r = 28, h = 1, and b = 8/3. The trajectory initialized
on S was considered transient until its first entry into the rectangular cuboid region B bounded by x-, y- and z-ranges of
(–19, 19), (–25, 25) and (4, 46), respectively. The Lorenz attractor for the model parameters considered is located within this
region. The four figure panels display the same quantity, but from different view angles. Comment: Note non-uniformity of
the transient-time distribution, with a spiraling belt of relatively long durations.
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3. Types of Transient Behavior
3.1. Sensitivity of Transients to Initial Conditions

A typical example of transient behavior for initial states chosen near the ribbon of
longest transient times (Figure 1) or, equivalently, that of largest trajectory-averaged local
stability multipliers (Figure 2), is shown in Figure 3. Here a bunch of trajectories that
emanate from close-by initial conditions splits in two diverging sets of trajectories, which
follow very different routes prior to reuniting near the asymptotic attractor location; the
latter attractor region is evident as a small butterfly-shaped cluster of trajectories close to
the origin. The immediate consequence of such transient behavior in the Lorenz system
is that it can apparently be as unpredictable as the asymptotic behavior in the sense that
similar extreme perturbations may result in completely unrelated transients as the system
relaxes back to the state of its statistical equilibrium.

3.2. Geometric Complexity of Transients

Another interesting observation is that transient approach to the asymptotic attractor
may be characterized by fairly complex trajectories, which appear, in some cases, to
emulate the attractor itself (Figure 4a,b). In particular, the trajectories here exhibit larger-
scale butterfly-shaped excursions prior to ending up on the similarly shaped asymptotic
attractor near the origin. We will refer to this phenomenon as to the “ghost” transient
attractor, with the intentionally oxymoronic character of the term implying the presence
of a temporary geometrical structure lurking in the phase-space region far away from the
statistically equilibrated long-time asymptotic solution.
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Figure 4. (a,b) An example of a “ghost” transient attractor in the simulation of the Lorenz model (1)
with σ = 10, r = 28, h = 1, and b = 8/3; (c,d) a trajectory of the Lorenz system with parameters (σ, r, h,
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Qualitatively, this behavior can be understood in the following way. We saw previ-
ously that some transients are able to stay away from the attractor for a longer time than
others (Figure 1). For such longer transient trajectories, the variables in the model (1) can
be locally rescaled in space and time to focus on their relatively persistent (large) local
phase-space distances from the origin and fast phase speeds. Effectively, this rescaling will
produce a system of equations completely analogous to Equation (1), but with different
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set of parameters (σ, r, h, b). If so, it may not seem improbable that for some regions of the
phase space, this “transient” Lorenz model will exhibit dynamical structures and trajectory
shapes akin to those known to arise for other parameter sets in the asymptotic limit of
statistically equilibrated behavior.

To present a concrete example of the rescaling mentioned above, we introduce the
following change of variables

(x′, y′, z′, t) = ε(x, y, z, t′). (3)

Note that for ε < 1, (3) corresponds to squishing the spatial coordinates and stretching
the time so that the large values of the non-transformed variables on the order of ε−1 will
correspond to the transformed variable values on the order of one, while the order-of-one
changes in the stretched time t′ will span the short interval on the order of ε when measured
in original time units t. This rescaling is thus appropriate, in principle, for the trajectories
in the region situated far from the origin and during a relatively short transient period
before returning to the asymptotic attractor behavior.

Substituting the transformation (3) into the system (1) and introducing the new set of
parameters

(σ′, r′, h′, b′) = ε(σ, r, h, b) (4)

results, for this case, in the same system of equations as the original system (1), but for
the primed variables. This implies that topological behavior of the trajectories that are
somehow able to persist in a far-away-from-attractor region of the phase space in which (3)
is valid can be qualitatively described by the asymptotic behavior of the Lorenz system
with a different set of parameters rescaled by ε−1, where ε corresponds to the ratio of the
radius-vector of defining the far-away location of the persistence region to the typical value
of the trajectories’ radius-vector in the original Lorenz system. Indeed, the topology of
the Lorenz system (1) with (σ, r, h, b) parameters rescaled in this way using the value of
ε = 1/3 (Figure 4c,d) looks qualitatively similar to the transient trajectories in Figure 4a,b.

Note that in the rescaling example (3), (4), the notion of the single parameter ε control-
ling the stretching of all three phase-space variables, as well as time, is completely arbitrary.
Furthermore, and more importantly, the local stretching (3) tells nothing about where in
the phase space the transient trajectories must be for the stretched regime to be persistent;
the latter persistence is essential for these trajectories to have sufficient time to reveal the
structure of the stretched-system attractor during transient evolution. For these reasons,
the qualitative demonstration above should be regarded as nothing more as an empirical
one-parameter fit to illustrate the concept of the “ghost” transient attractor.

4. Summary and Discussion

We studied transient behavior in numerical simulations of the three-variable Lorenz
model (1) initialized far away from the region of its asymptotic chaotic attractor. These
transients were shown to have a range of durations, with the longest transients correspond-
ing to the trajectories having largest average local stability multipliers and complex routes
emulating sensitivity to initial conditions, as well as exhibiting the “ghost” attractors akin
to their asymptotic siblings.

Persistent chaotic transients in the Lorenz system have been studied before in the
particular case when the Rayleigh number was chosen to be just below the critical value
required for chaotic behavior [9,10]; this regime has been dubbed the pre-turbulence
regime [11]. With this choice of parameters, the model trajectories initially evolved along
the attractor that was close to the asymptotic chaotic attractor of the system with a slightly
higher Rayleigh number, but slowly decayed from chaos to the final state of a steady
flow. This situation is different from the one considered in the present paper, where the
parameters of the Lorenz model were set to correspond to the chaotic regime; the non-trivial
transients arise here due to the dynamical properties of the system considered in the phase
space regions situated far from the asymptotic attractor.
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A recent study of pre-turbulence in the Lorenz system [12] elucidated an important
role of global invariant manifolds in defining the topological structure of long transients
in this ‘pre-chaotic’ regime. Interestingly, for the classical chaotic regime considered here,
the locations (on our chosen sphere) of the initial conditions that result in the longest
transients (Figures 1 and 2) are also apparently connected to the geometry of the Lorenz
manifold [13]—the stable manifold of the origin (compare our Figures 1 and 2 with Figure 1
of that paper and its animated online version). The global structure of the Lorenz manifold,
which dictates asymptotic destiny of the trajectories started at an arbitrary initial condition,
is indeed intricate [14]. Our results, however, emphasize a different type of transient
complexity: for example, temporary divergence of initially close transient trajectories (and
thus their widely different routes) far before they reach the asymptotic attractor, as well as
their ‘ghost attractor’ behavior. Further studies are necessary to examine in detail the role
of the Lorenz manifold in the transient dynamics discussed here.

Transient behavior of dynamical systems recently drew a lot of attention in the eco-
logical literature (see [15] and references therein). The discussion in [15] evolved around
recognizing the fact that the transient behavior is closely associated with the inherently
multi-scale character of natural systems, including the timescale asymmetries stemming
from the presence of the stable and unstable manifolds in these systems’ dynamics; inciden-
tally, this presence is the root of the strange chaotic attractor in the Lorenz model. Cushing
et al. [16] described laboratory experiments and numerical simulations of the transient
behavior in an underlying population model, which depended on the choice of the initial
conditions near the stable or, alternatively, unstable manifold of an equilibrium point of
this model. This sensitivity of the transient evolution to initial conditions is qualitatively
similar to the behavior we report here, but involves completely different dynamics, which
lack, for example, the “ghost-attractor” behavior.

The properties of the transient behavior in the Lorenz model discussed here are not
just beautiful but may also have important implications in understanding the evolution of
complex nonlinear systems such as climate, economy, ecosystems, sociological networks
and so on, if these systems are somehow taken far from their equilibrium states. In
particular, similar extreme perturbations in such systems may exhibit widely different
variations before relaxing back to the statistical equilibrium.
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