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Abstract
Climate is a special spatiotemporal dynamical system. Its time scale can be extended indefinitely, but its space scale can never 
exceed that of the size of the system. We call this a “mismatching” in space and time domains. With the help of a simplified 
system of primitive equations, this exploratory paper shows that these scale characteristics may have a significant impact 
on the mathematical and physical structure of the system. The results show that the mismatching of space–time scales will 
lead to a decrease of the system’s dimension, degenerating the system from an infinite dimensional to a finite one. Also they 
show that “mismatched” domains can lead to a greater consistency of the system’s structure in space, as they form a system 
of uniform structures which are described as “patches”. This may lead to an alternative way of representing climate and its 
variability as a pattern system defined by the collective behavior of interacting patches or subsystems.

Keywords Climate · Modeling · Space and time domains · Pattern dynamics · Climate subsystems

1 Introduction

Since the early atmospheric circulation climate models (see 
for example, Philips 1956), scientists have made great pro-
gress in developing and improving climate models. However, 
due to the complexity of the climate system, unprecedented 
difficulties (Held 2005; Latif 2011; Luan et al. 2016) still 
exist. Our intent here is not to discuss the state-of-the-art in 
climate modeling, but to present a theoretical analysis that 

may potentially lead to an alternative way of representing 
climate.

Atmospheric motion is a multi-scale space–time system. 
When a numerical model is used to simulate or to forecast, 
only specific space and time scales are considered (for 
example, a certain region of the planet and a certain length 
of time). In general, as a rough division, atmospheric pro-
cesses can be divided into two different systems: weather 
and climate. Usually, atmospheric processes lasting less than 
two weeks (for example, mid-latitude systems) are called 
weather, and their corresponding spatial scales are clearly 
less than  104 km (Earth’s circumference). Monthly and sea-
sonal processes (such as those associated with temperature 
or precipitation anomalies) are called long-term weather 
processes or short-term climate processes. The atmospheric 
processes of years and greater (El Nino, decadal variability, 
and beyond) are collectively referred to as climate processes. 
The spatial scale corresponding to the latter two processes 
is still a very ambiguous problem, and it is also the issue to 
be discussed in this paper. Nevertheless, it is clear that in 
“weather” both the time scale and the space scale should 
be bounded. In “climate”, however, the time scale can be 
extended indefinitely, while the spatial scale can only be 
confined to the size of the Earth’s atmosphere itself. In 
this sense, the space and time domains may be regarded as 
“mismatched”.
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About half a century ago, Fujita (1963) and Orlanski 
(1975) carefully classified the types of weather systems 
according to their time and space scales. They divided the 
most representative weather processes into three systems 
according to their spatial scales: macro, meso, and micro. 
Given the corresponding time scale range of these weather 
processes, it follows that the ratio of the spatial scale L to the 
time scale τ is proportional to a certain characteristic hori-
zontal velocity, U (typically 10 m/sec), i.e.: L/τ ∝ U. Physi-
cally, this condition signifies that the energy and momentum 
carried by the weather system can maintain modes in a mod-
erate time and space domain. Using the concept of “scale” to 
determine the basic dynamics of weather systems provides 
an important theoretical basis and a good starting point for 
the study of atmospheric motion.

This paper argues that the fact that the space domain is 
bounded while the time domain isn’t will become an impor-
tant scientific issue, and will have a far-reaching impact on 
our understanding of climate and its prediction. The main 
structure and contents of this paper are as follows: The fol-
lowing section uses a standard atmospheric dynamics model 
as a platform to discuss the relationship between the time 
and space scales, the resulting model structure. In the third 
section, we will present an example and we will discuss the 
implications of our findings. In the last section, we briefly 
summarize the main results of this paper.

2  The climate system and its space–time 
domain

Next, we will explore the consequences of the mismatch 
between the space and time domains by considering a simple 
model for atmospheric motion based on the conservation of 
momentum, mass, and energy laws.

The symbols used in the equation have the usual math-
ematical and physical meanings. Here, we can see that V⃗  , 
p, ρ and T represent the velocity vector, pressure, density, 
and temperature of the atmosphere, while g⃗, �⃗�, �, �, Rd and 
Q stand for the gravity acceleration, the rotational angular 
velocity of the earth, the atmospheric diffusion coefficient, 

𝜕V⃗

𝜕t
+ V⃗ ∙ ∇V⃗ = −

1

𝜌
∇p + g⃗ − 2�⃗� × V⃗ + 𝜇∇2V⃗

(1)
𝜕𝜌

𝜕t
+ V⃗ ∙ ∇𝜌 = −∇ ∙ 𝜌V⃗

p = �RdT

𝜕T

𝜕t
+ V⃗ ∙ ∇T − 𝜅∇2T = Q

the heat conduction coefficient, the ideal gas constant, and 
external heat source, respectively.

In order to facilitate the discussion on the scales issue, we 
have simplified the above equations by using the assump-
tions of hydrostatic equilibrium and incompressible flow and 
writing them in dimensionless form. These changes should 
not have an important impact on the analysis and conclusion 
of the problem:

H e r e  t∗ = t∕�  ,  (x∗, y∗, z∗) =
(
x, y,

L

H
z
)
∕L  , 

∇∗ =
(

�

�x
,

�

�y
,

H

L

�

�z

)
L  ,  (u∗, v∗, w∗) =

(
u, v,

L

H
w
)/

U  , (
T∗, P∗, �∗

)
=
(
T∕Θ, P∕�U2, �∕�

)
 , g∗ = gH

U2
 , R∗

d
=

Θ

U2
R
d
 , 

Q∗ = Q�∕Θ , while U, Θ, � , and T, L, H stand for the char-
acteristic quantities of horizontal wind speed, temperature, 
density and time scale, horizontal space scale and vertical 
space scale, respectively. The dimensionless parameters 
appearing in the equations, in addition to the well-known 
Rossby number Ro =

U

fL
 and Reynolds number Re =

LU

�
 

(including Rp =
LU

�
 ), involve another parameter S1 = U

�

L
 

related to space–time scale and the characteristic quantity of 
atmospheric horizontal velocity U. Here, U can be expressed 
in terms of the macroscopic average of the horizontal wind 
speeds of the real atmosphere. Referring to the values used 
by Orlanski (1975) and Fujita (1963) in the scale classifica-
tion of weather system, we assume a value of U = 10 m/sec.

Among the issues to be discussed in this paper,  S1 is a crucial 
parameter. It defines whether the system (2) is a weather process 
or a climate process. If, S1≈1 the system describes a weather 
process including atmospheric circulation. If S1 >  > 1, the system 
describes an atmospheric process with a finite spatial scale and 
a very large temporal scale. From Eqs. (2.1), (2.2), and (2.6), it 
can be seen that S1 actually represents the ratio between the tem-
poral variation and the spatial variation of the system. If S1≈1, 
it means that the contributions of these two parts to the system 

(2.1)

𝜕u∗

𝜕t∗
+ S1

(
V⃗

∗
∙ ∇∗u∗ +

𝜕p∗

𝜕x∗
− R−1

o
v∗ − R−1

e
∇∗2u∗

)
= 0

(2.2)

𝜕v∗

𝜕t∗
+ S1

(
V⃗

∗
∙ ∇∗v∗ +

𝜕p∗

𝜕y∗
+ R−1

o
u∗ − R−1

e
∇∗2v∗

)
= 0

(2.3)−
�p∗

�z∗
− g∗ = 0

(2.4)
�u∗

�x∗
+

�v∗

�y∗
+

�w∗

�z∗
= 0

(2.5)p∗ = �∗R∗
d
T∗

(2.6)
𝜕T∗

𝜕t∗
+ S1

(
V⃗

∗
∙ ∇∗T∗ − R−1

p
∇∗2T∗

)
= Q∗
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are balanced. We call such a system to be ‘matched’ in time and 
space domains. Conversely, if S1 >  > 1, the above balance is bro-
ken and the system is called ‘mismatched’. As we will see below, 
the reduction in spatial variation caused by the mismatch would 
necessarily result in uniformity of the space state distribution 
of the system. Note that, between the above two cases, lies the 
interval where S1 may be greater than one but not much greater 
than one, which represents the transitional states from weather to 
climate. We do not intend to discuss this issue here.

As we mentioned above, the set of equations we use here 
represent atmospheric motion. As such, this set does not rep-
resent the climate system per se, which is a coupled atmos-
phere–ocean-land system and involves slower oceanic and ice-
sheet dynamics. This being an exploratory paper, we focus on 
the simpler atmospheric motion system for S1 >  > 1. Our hope 
is that our results will be followed by extension of this work to 
more complicated models.

For convenience in writing, we will omit the super-
script “*” of all variables and will initially define 
the system (2) in a simple rectangular domain 
D ∶

(
x0 < x < x1; y0 < y < y1; z0 < z < z1

)
 . To further sim-

plify the system (2) we consider the conservation of energy 
Eq. (2.6). Because S1 >  > 1, it should hold that

If we further assume that R−1
p

<< 1 . This is equivalent to 
ignoring the heat conduction term in Eq. (2.6) (for this we only 
need to meet the condition L >  > k/U). Then the above relation-
ship should approximately result in the following equation.

The solution of Eq.  (3) is an arbitrary function that is 
independent of space, and only depends on time (written as 
T = T(t)). This property of T is very important. It means that, 
within the spatial region D, the temperature T is uniformly 
distributed. This result provides us with an opportunity for 
further simplifying Eq. (2.6). In this case, the spatial average 
of Eq. (2.6) in the domain D gives:

where T = ∭ Tdxdydz = T and Q = ∭ Qdxdydz . Assum-
ing that the vertical velocity takes a value of zero at the 
upper and lower boundaries of D i.e.w(z=z0) = w(z=z1) = 0

(note that w(z=zB) = w
(
x,y,zB

)
 ), we obtain the integrals for 

the second term in Eq. (4):

(2.7)−
(
V⃗ ∙ ∇T − R−1

p
∇2T

)
=

(
𝜕T

𝜕t
− Q

)

S1
<< 1

(3)V⃗ ∙ ∇T = 0

(4)
𝜕T

𝜕t
+ S1 ∭

(
V⃗ ∙ ∇T

)
dxdydz = Q

(5)∭
(
�uT

�x
+

�vT

�y
+

�wT

�z

)
dxdydz = uT

(x=x1 )
− uT

(x=x0)
+ vT

(y=y1)
− vT

(y=y0)

Here uT(
x=x1 )

= ∬ u
(
x1, y, z, t

)
T
(
x1, y, z, t

)
dydz  ( the 

other three terms are defined similarly). These four terms 
in the right-hand of Eq. (5) represent the averages of tem-
perature flux on boundaries (x1, y, z), (x0, y, z) (x, y1, z) 
and (x, y0, z) of D, respectively. They are all function of 
time and can be given by boundary conditions. It is not 
difficult to see that Eq. (5) is the result given by the famous 
Gauss law. This result indicates that the average value of 
temperature transport in domain D is equal to the differ-
ence of the average temperature fluxes on both sides of the 
boundary of D. Using this property, we can transfer some 
physical quantities in the domain D to the boundary and 
discuss them with other corresponding physical quantities.

After these results are substituted into Eq.  (4), the 
nonlinear ODE describing the temperature T in D can be 
established as follows:

Noted that the condition 
(
V⃗ ∙ ∇T

)
≪ 1 (or ≈ 0) does 

not mean that S1
(
V⃗ ∙ ∇T

)
≪ 1 (or ≈ 0) . This is because 

both  S1 and 1
/(

V⃗ ∙ ∇T
)

 are variables of the same order 
(see Eq. (2.7)). Following the above steps, we can also 
construct a differential equation describing the mean hori-
zontal wind field 

(
u, v

)
 by means of (2.1) and (2.2). It is 

not difficult to see that, assuming the quasi-geostrophic 
approximation and R−1

o
<< 1 , the Eqs. (2.1) and (2.2) give 

the following relationships

Furthermore, we can obtain the following equations

The above equations indicate that inside the domain 
D the horizontal wind field is also spatially uniform and 
only a function of time. Neglecting the friction term and 

(6)

dT

dt
+ S1

(
uT

(x=x1 )
− uT

(x=x0)
+ vT

(y=y1)
− vT

(y=y0)
)

= Q

|||V⃗ ∙ ∇u
||| =

|||
𝜕u

𝜕t

|||
S1

<< 1

|||V⃗ ∙ ∇v
||| =

|||
𝜕v

𝜕t

|||
S1

<< 1

(7)
u
�u

�x
+ v

�u

�y
+ w

�u

�z
= 0

u
�v

�x
+ v

�v

�y
+ w

�v

�z
= 0
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implementing spatial averaging for Eqs. (2.1) and (2.2), 
we obtain that:

Due to the uniformity of (u,v) in domain D, we may 
derive the ODEs that the mean wind speeds u and v satisfy:

where

Furthermore, multiplying both sides of the Eq. (2.1) and 
(2.2) by 2u and 2v, respectively, and then adding both of 
them, we can obtain the kinetic energy equations of the 
system

where E2 = u2 + v2 , R = E2 + 2p + 2gz . Because S1 >  > 1, 
then we should have V⃗ ∙ ∇R = 0 ,which gives 

where c1(t) is an arbitrary time function. Then, calculation 
of its spatial partial derivative gives

The above equations indicate that the horizontal pressure 
gradient field of the system is also uniform in space. Because 
of Eq. (12), Eq. (10) becomes

So far, we defined a domain D and derived a set of ordi-
nary differential equations composed of Eqs. (6), (9), and 

(8)

𝜕u

𝜕t
+ S1

(
∭ V⃗ ∙ ∇udxdydz +∭

(
𝜕p

𝜕x
− R−1

o
v

)
dxdydz

)
= 0

𝜕v

𝜕t
+ S1

(
∭ V⃗ ∙ ∇vdxdydz +∭

(
𝜕p

𝜕y
+ R−1

o
u

)
dxdydz

)
= 0

(9)

du

dt
+ S1�1 = 0

dv

dt
+ S1�2 = 0

(10)
𝛼1 = ∭

(
V⃗ ∙ ∇u +

𝜕p

𝜕x
− R−1

o
v

)
dxdydz = u2

(x=x1)
− u2

(x=x0)
+ uv(y=y1) − uv(y=y0) + p(x=x1) − p(x=x0) − R−1

o
v

𝛼2 = ∭
(
V⃗ ∙ ∇v +

𝜕p

𝜕y
+ R−1

o
u

)
dxdydz = v2

(y=y1)
− v2

(y=y0)
+ uv(x=x1) − uv(x=x0) + p(y=y1) − p(y=y0) + R−1

o
u

(11)𝜕E2

𝜕t
+ S1

(
V⃗ ∙ ∇R

)
= 0

R = E2 + 2p + 2gz = c1(t)

(12)
2
�p

�x
= −

�E2

�x
= −2

(
u
�u

�x
+ v

�v

�x

)

2
�p

�y
= −

�E2

�y
= −2

(
u
�u

�y
+ v

�v

�y

)

(13)
�1 =

1

2

(
u2

(x=x1)
− u2

(x=x0)
− v2

(x=x1)
+ v2

(x=x0)
)
+ uv(y=y1) − uv(y=y0) − R−1

o
v

�2 =
1

2

(
v2

(y=y1)
− v2

(y=y0)
− u2

(y=y1)
+ u2

(y=y0)
)
+ uv(x=x1) − uv(x=x0) + R−1

o
u

(13), which describe, in terms of the temperature, the hori-
zontal wind, and the air pressure, the climate in that domain 
when the space and time scales are “mismatched”. The 
above analysis reveals the important influence of the mis-
match of the space–time scales on the mathematical physical 
structure of the atmospheric system, more specifically, that 
the increase in mismatch necessarily leads to the uniformity 
(in terms of mean temperature, mean wind, and mean pres-
sure) of the system’s structure in space. Next, some more 
interesting results from this are presented.

3  Pattern climate

With the help of the mathematical and physical framework 
presented above, we propose a new climate system which 

we call "pattern climate".
We begin by dividing the global region into k sub-regions 

according to the difference in some driving force, and we 
call each sub-region a ‘patch’ (denoted asDi|i=1,...,k ). For 
each patch, a corresponding climate subsystem is estab-
lished according to Eq. (2). Based on the results presented 
in Sect. 2, we assume that the scale parameter S1

(i) and the 
driving force Qi of each subsystem are mismatched and only 
depend on time not on space. We also assume that the state 
variables of the system remain continuous on the boundary 
Г between adjacent patches. This allows for exchange of 
energy and mass. While what exactly the nature of the driv-
ing force is may be open to further research, several options 
may be available. For example, the spatial distribution of 
heat or winds, or even known large scale features, such as 
El Nino, NAO, etc., could be considered.

The above formulation may be reminiscent of the geo-
graphical classifications of climatology, but there is more 
to our results than climate classification. Eqations (6), (9), 
and (13) represent a set of nonlinear ODEs that describe 
the dynamics inside a patch. In a sense, these equations 
represent a much lower dimensional dynamical subsys-

tem. And a group of patches can form a ‘climate pat-
tern’, where communication between adjacent patches is 



3309Climate: a dynamical system with mismatched space and time domains  

1 3

possible, thereby defining global climate variability. This 
is similar to recent developments in network theory and 
its applications to climate (for example, Tsonis et al. 2010; 
Steinhaeuser and Tsonis 2013; Fountalis et al. 2013). They 
have shown that climate fields (both observed and simu-
lated) are composed of a number of interacting communi-
ties or subsystems, with each community obeying distinct 
dynamics or rules and therefore subject to different driving 
forces. The overall network of communities (which can be 
also thought as “patches”) and their interactions explain 
fundamental features of the climate system. We note here 
that other approaches to produce reduced climate models 
have been proposed in the past, but not dealing with the 
mismatch of the time and space domains (see for exam-
ple, Majda et al. 2009, where stochastic reduced climate 
models are suggested for the study of atmospheric low-
frequency variability). In addition, it should be pointed 
out that the case of k = 1 is an interesting special one, cor-
responding to a climate system which contains one global 
super patch. Scientists have done a lot of research for it. 
Using the principle of balance of atmospheric radiation 
energy budget, they established some climate systems 
called "box model" and discussed the nonlinear dynamic 
mechanism of long-term climate process (for example, 
North and Coakley 1979; Saltzman 2001; Duan and Zhou 
2014).

As an example, we construct a simple climate pattern 
system consisting of three patches D1 , D2 and D3, each 
of which is adjacent to the other two (see Fig. 1). We use 
Li(i = 1, 2, 3) represent the spatial scale of, the correspond-
ing patch, while li(i = 1, 2, 3) to indicate the length of the 
a, djacent sides of the two patches.

Here, we only give the equations on the temperature T. 
Following the steps given in the Sect. 2, the construction 
of this climate model should satisfy the following average 
equations:

where S(i)
1
= U�

/
Li|i = 1, 2, 3 Carrying out the integral (see 

Eq. 6) and considering the continuous boundary condition, 
Eq. (14) becomes

Here, ai can be regarded as the internal energy exchange 
coefficient determined by the size of the of the patch inter-
face. Adding the above three equations, we can get

w h e r e  c1 = a2a3S
(2)

1
S
(3)

1
 ,  c2 = a3a1S

(3)

1
S
(1)

1
 a n d 

c3 = a1a2S
(1)

1
S
(2)

1
 . The above equation indicates that the 

tendency of the total internal energy of the three patches 
depends only on the total external source, where ci are their 
respective weights.

We can extend Eqs. (15) and (16) to a global pattern 
consisting of M patches. This system is equivalent to place 
all the patches on a closed sphere and completely covering 
it. Here any one of the patches Di (i = 1, 2, …, M) and its 
adjacent k patches can form a ‘patch group’ (the schematic 
view can be seen in Fig. 2).

In this case, the global climate system consisting of all 
patches can be expressed as follows

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜕T1

𝜕t
+ S

(1)

1
∭
D1

�
V⃗1 ∙ ∇T1

�
dxdydz = Q1

𝜕T2

𝜕t
+ S

(2)

1
∭
D1

�
V⃗2 ∙ ∇T2

�
dxdydz = Q2

𝜕T3

𝜕t
+ S

(3)

1
∭
D1

�
V⃗3 ∙ ∇T3

�
dxdydz = Q3

(15)

⎧
⎪⎨⎪⎩

dT1

dt
+ a1S

(1)

1

�
u2T2 − u3T3

�
= Q1

dT2

dt
+ a2S

(2)

1

�
u3T3 − u1T1

�
= Q2

dT3

dt
+ a3S

(3)

1

�
u1T1 − u2T2

�
= Q3

�
ai =

li

Li
�i=1,2,3

�

(16)
d
�∑

i=1,2,3 ciTi
�

dt
=

�
i=1,2,3

ciQi

Fig. 1  A schematic diagram of pattern system consisting of three 
patches

Fig. 2  Schematic diagram of the patch group which is consisting of 
Di and its adjacent patches Dj (j = 1, 2…, k); k is the number the adja-
cent patches
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where  V(n)

i.j
  (i = 1, 2,…, M; j = 1,2,…, k) can be given by 

Eqs. (9) and (13). They represent the normal wind compo-
nent of patch Dj at its junction with the patch Di , which is 
defined as positive when it blows toward Di . �i =

li

Li

S
(i)

1
 

βi =
li

Li

S
(i)

1
 represents the flux exchange coefficient between 

Di and Dj , and M is the total number of the patches or patch 
groups.

In essence, Eq. (17) can be seen as a climate subsystem. 
Each equation is determined by its own spatial scale L and 
driving force Q. The set of subsystems constitutes a pattern 
system. Therefore, we can think that the non-uniformity of 
the spatial distribution of the driving force creates the cli-
matic pattern.

S imi la r  to  Eq .   (16) ,  we  a l so  have  tha t  ∑M

i=1

dciTi

dt
=
∑M

i=1
ciQi or dT̃

dt
= Q̃ , where T̃  and Q̃ represent 

the total internal energy and total external source of the 
system, respectively, which indicate that the total internal 
energy of the system is independent of the energy exchange 
between the patches. Note that analogous to Eq. (17), equa-
tions corresponding to the mean horizontal wind and mean 
air pressure can be derived from Eqs. (9) and (12).

In addition, the irregular spatial structure can also be built 
into a regular one. For example, if we cover it with a regu-
lar net, and as long as the condition S1 >  > 1 applies, then, 
following the Eq. (17), we can establish a climate model 
consisting of the regular patch groups as follows (also see 
Fig. 3).

where Qi,j stands for the average of the external source in 
the mesh (i; j).

4  Conclusion and discussion

As a brief summary of this paper, we give the follow-
ing conclusions: Compared with weather system, climate 
is a very special space–time system. Its time scale can 
be arbitrarily long, but its spatial scale is always limited. 
This characteristic of the space and time domains leads 
to a variety of climate states. In this paper, a dimension-
less parameter S1 = Uτ/L is used to represent the structures 
of the space and time scales of the atmospheric system. 
S1≈1 indicates that the space–time domains are “matched” 

(17)
dTi

dt
+ �i

k∑
j=1

V
(n)

i,j
Tj = Qi (i = 1, ...,M)

(18)dTi,j

dt
+ S1

[(
ui+1,jTi+1,J − ui−1,jTi−1,j

)
+
(
vi,j+1Ti,j+1 − vi,j−1Ti,j−1

)]
= Qi,j (i = 1,… ,m;j = 1,… ,m)

and corresponding to the weather process, while S1 >  > 1 
indicates that the two domains are “mismatched” and cor-
responding to the climate process. The atmospheric sys-
tem between the two above cases is considered as a long-
term weather process or short-term climate process. The 
increase of S1 means that the influence of nonlinear spatial 
transport in the system is weakened, as the system tends 
more and more to uniformity. When S1 is large enough, the 
spatial structure of the system state will homogenize and 
form a “patch”. Each patch is open. It can exchange energy 

and mass with its adjacent patches and therefore make up 
of a patch group. All the patches form a “pattern”.

As we mentioned in the beginning of this paper, this 
work is an exploratory work into an idea that may lead to 
an alternative way to view and model climate variability. 
It is by far not complete, and more research is needed 
to further support our results. For example, observed and 
climate simulated fields could be considered, derive the 
patches from the communities of the corresponding net-
works and test our ideas. Work in this area is underway 
and we hope to report results in the near future.
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Fig. 3  Schematic diagram of the regular mesh, where (i, j) stands for 
the mesh coordinates
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