On the Range of Frequencies of Intrinsic
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Abstract The purpose of this work is to establish the limits of natural oscillations
in the climate system, i.e., not attributed to alleged anthropogenic effects. To this
end we considered many proxy climate records representing the state of climate in
the past when human activity was not a factor.
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1 Introduction and Data

Twenty different reconstructed short-length proxy temperature records, six instru-
mental temperature records as well as five long-length proxy temperature records
(four of which are ice-core reconstructed temperature records and the other recon-
structed temperature record being from marine benthic oxygen isotopes) were
analyzed in this study. The twenty reconstructed proxy temperature records rep-
resent annual means and range in length, location, and type. The six instrumental
temperature records are monthly mean records and were all located in central
Europe. They range in length from 231 to 247 years. Four of the long proxies are ice
cores and one is a global marine benthic oxygen isotope record. Three of them have
uneven time interval, while in two of them the values are spaced 500 years apart.
The details of the records used in this paper are as follows: Laguna Aculeo, Chile,
summer mean sediment pigments, (856-1997 AD) (Von Gunten et al. 2009); Baffin
Island, Canada, summer mean sediment thickness, (752-1992 AD) (Moore et al.
2003); Canadian Rockies, Canada, summer mea tree-ring thickness, (950-1994
AD) (Luckman and Wilson 2006); Firth, Alaska, summer mean tree-ring thickness,
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(1073-2002 AD) (Anchukaitis et al. 2013); Canadian Rockies, tree-ring thickness
(950-1994 AD) (Luckman and Wilson 2006); Iceberg Lake, Alaska, annually varve
thickness, (442-1998 AD) (Loso 2008); Gulf of Alaska, summer mean tree-ring
thickness, (724-1999 AD) (Wilson et al. 2007); Idaho, USA, annually July mean
tree-ring thickness, (1135-1992 AD) (Biondi et al. 2006); North Andes, South
America, annual mean tree-ring thickness, 1640-1987 AD), South Andes, South
America, annual mean tree-ring thickness, (1640-1993 AD) (Villalba et al. 2006);
Beijing, China, summer mean stalagmite thickness, (—665-1985 AD) (Tan et al.
2003); Central Europe, annual mean documentary data, (1005-2001 AD) (Glaser
and Riemann 2009); China, annual multi-proxy reconstruction, (1000-1950 AD)
(Shi et al. 2012); Cold Air Cave, South Africa, 5-year smoothed annual stalagmite
isotope, (1635-1993 AD) (Sundqvist et al. 2013); European Alps, summer mean
tree-ring and sediment thickness, (1053-1996 AD) (Trachsel et al. 2012); Lake
Silvaplana, Switzerland, summer mean visible reflectance spectroscopy of lake
sediment, (1175-1949 AD) (Trachsel et al. 2010); Slovakia, Europe, summer
mean tree-ring, (1040-2011 AD) (Biintgen et al. 2013); Sweden, Europe, summer
mean tree-ring, (1107-2007 AD) (Gunnarson et al. 2011); Tornetrask, Sweden,
annual tree-ring, (500-2004 AD) (Grudd 2008); West Qinling Mts., China, annual
tree-ring, (1500-1995 AD) (Yang et al. 2013); Spannagel Cave, Europe, stalagmite
thickness, (-9-1935 AD) (Mangini et al. 2005); Paris, France, monthly mean
instrumental, (1764-2000 AD) (Météo France 2012); Hohenpeienberg, Germany,
monthly mean instrumental, (1781-2013 AD) (Climate Research Unit CRU 2012);
Kremsmunster, Austria, monthly mean instrumental, (1767-2013 AD) (Auer et al.
2007); Munich, Germany, monthly mean instrumental, (1781-2011 AD) (Deutscher
Wetterdienst DWD 2012); Prague, Austria, monthly mean instrumental, (1771
2013 AD) (Czech Hydrometeorological Institute CHMI 2012); Vienna, Austria,
monthly mean instrumental, (1775-2013 AD) (Climate Research Unit CRU 2012);
Dome Fuji, Antarctica, ice core, (—339500-750 AD) (Kawamura et al. 2007);
EPICA Dome C, Antarctica, ice core, (—800,000-1900 AD) (Jouzel et al. 2007);
GISP2 ice core, central Greenland, ice core, (—48000-1850 AD) (Alley 2004);
Global 1Ma Temperature, marine benthic oxygen isotopes, (—1067900-2000 AD)
(Bintanja et al. 2005); Vostok, Antarctica, ice core, (—470766-2000 AD) (Petit et al.
1999).

For the analysis here, all six instrumental monthly records were converted
to yearly mean records. The uneven records were interpolated to fill in missing
values and to create 500-year-interval records. For interpolation we employed the
piecewise cubic spline interpolation function in Matlab® (interp1).

2 Method and Results

In this study, we used the simple method of discrete Fourier transform (DFT) as our
method for spectral analysis. DFT converts finite, equal spaced time domain sam-
ples, temperature records, into a finite combination of complex sinusoids ordered by
their frequencies. Note that interpolation can result in enhancing lower frequencies
and reducing higher frequency components (Schulz and Mudelsee 2002). To verify
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that our interpolation has little to no effect on the frequency components, our
interpolated temperature records’ DFT spectral analyses are compared to the
spectral analysis using the Lomb—Scargle periodogram method. We found that both
peak frequency and intensity are comparable between the two methods.

Each temperature record used in this study was first detrended using the Matlab”
function (detrend). In order to obtain more frequency steps in the DFT spectral
analysis, zero padding was applied to both ends of the temperature records to
create temperature records of equal length of N = 10000 time steps. Then for
each temperature record we employed the discrete Fourier transform using the
fast Fourier transform function in Matlab® (fft). The output of this function was
a combination of complex sinusoids in the form A + Bi, where A and B are a pair of
harmonic predictors which can be found using:
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where At is the time interval, y, = y(,) n=1,n, and T = NAt. To find the variance
associated with a given pair of harmonic predictors (Cy):

= A + B¢
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Cy, gives us the power values for the power spectrum. The power values for each
spectrum were then normalized by dividing by the area comprised by the whole
spectrum. For this to happen it first must be pointed out that by using this method,
only half of the spectrum is retrieved as the second half is just a mirror image of
the first half. Therefore, in order to be able to normalize each spectrum by dividing
by the area of the whole spectrum, we must double the area of the first half of the
spectrum. Since the focus of this study is on climate periodicities, each graph has
an upper frequency limit of 0.04 year™! or periodicity of 25 years.

In order to obtain significant peaks within the DFT power spectra, we must
estimate an appropriate 95% confidence level. For this study the 95% confidence
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level was established by using 1000 Monte Carlo synthetic runs using fractional
Brownian motions (fBms). It has been shown in the past (Koscielny-Bunde et al.
1998), and was verified here for all records, that temperature records do indeed have
properties of fractional Brownian motions with an exponent (also referred to as the
Hurst exponent) greater than 0.5. This is statistically desired because in this case
surrogate data can be generated to assist in the statistical significance of the results.
The Hurst Exponent can vary between 0.0 and 1.0. The range between 0.5 and 1.0
corresponds to persistence while the range between 0.0 and 0.5 corresponds to anti-
persistence. First, in order to use fBms as surrogates, each temperature record must
be examined to verify that it is indeed an fBm. To calculate the Hurst exponent
(Feder 1988) of a time series:

=y (tn)n=1‘N

First, find the mean of the time series:

1 &
M = NZ)’:‘
i=1

Then calculate the deviations from the mean:

X =y-M
Xo=y—M
Xy =n—M

Next, calculate the cumulative sums:

Zx=x1
Zy =x1+x

Zy =3 %
Compute the range:
R, = max [Z,] — min[Z,]

Compute the standard deviation:

The rescaling range ';—;L can be used to estimate the Hurst exponent (H).
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Fig. 1 Proxy record from Baffin Island, Canada (fop) and its Hurst analysis (bottom). The results
indicate that this record has properties of a fractional Brownian motion with an exponent of about
0.72

R,
= =cnf
Sy
where C is a constant. From here:
Ry
log e log(C) + H log(n)
n

Then the slope of the linear regression line between log (g—:) vslog(n) gives the

Hurst exponent H.

Figure 1 shows an example of the data used. It is from Baffin Island, Canada
and it is a proxy sediment thickness record (top). The bottom graph shows the
results of a Hurst analysis, which indicates that this record is indeed a fractional
Brownian motion with an exponent of about 0.72 indicating persistence. We found
that all the records used here are fBms with an exponent greater than 0.5. As was
mentioned above, this result is consistent with earlier results base on temperature
records (Koscielny-Bunde et al. 1998).

Figure 2 shows the statistical procedure used here to produce statistically
significant periodicities in the data. First, the spectra of the proxy record were
produced (blue line). Then we produced 1000 surrogate Brownian motion with
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Fig. 2 Spectra of the proxy record in Fig. 2

the same exponent as the proxy data and calculated their spectra. Any peak in the
original proxy data above the 95% percentile of these 1000 surrogates (black line)
was then considered as a significant oscillation. In this case we have three significant
oscillations at about frequencies 0.0075, 0.014, and 0.025 years ™' (or periodicities
130, 70, and 40 years). Figure 3 shows all the significant periodicities of all record
but the last 5 (long interpolated records) and Fig. 4 shows all of the records (in red
the last five very long records indicating astronomical Milankovitch forcing).

The important conclusion from this study is that there seems to exist two
types of natural oscillations in the climate system. Those internal to the climate
system ranging up to 1000 years and those of much longer period attributed to
the Milankovitch cycles. There may still be oscillations in between but the data
available here cannot resolve them. Yet the major conclusion is that long time-scale
oscillations that cannot be attributed to human activity are present in proxy climate
records.

This study is consistent with a much earlier study (Zhuang 1991), which used 13
different isotope records from the SPECMAP project http://gecmd.nasa.gov/records/
GCMD_EARTH_LAND_NGDC_PALEOCL_SPECMAP.htm] (Fig. 5). The simi-
larity between our results and those independent results is striking.
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Fig. 4 Same as Fig. 3 but for all records
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Fig. 5 Same as Fig. 4 but for an independent data set
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