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1. Data and pre-processing

All model data was obtained from the Climate Model Intercomparison Project phase 3 (CMIP3) archive hosted by the Earth System Grid archive (ESG 2012). For each model, we obtained all pre-industrial control runs and all 20th-century forced runs for which the 500hPa geopotential height, surface air temperature (SAT), sea level pressure (SLP), and precipitation were available at monthly resolution, resulting in a total of 98 individual runs from 23 different models (Tables S1-S4). As a proxy for observations (reality) we used the NCEP/NCAR Reanalysis 1 dataset, available from the NOAA Earth System Research Laboratory (NOAA ESRL 2012) The mapping of model runs to numbers, used in Figs 1 and 2 is shown in Tables S2 and S4. To maximize overlap between models and observations, we selected the 50-year period from 1950-1999 for our study. We also included a 500-year control run of the ECHAM5 climate model, available from the World Data Center for Climate Hamburg CERA Database (WDCC 2012).
In order to include all model runs and ensure a fair comparison between models run at different resolutions, all datasets were interpolated to a uniform grid of 5o latitude x 5o longitude with the Climate Data Operators (CDO) using bilinear interpolation resulting in 72 points in the east-west direction and 37 points in the north-south direction. Since each pole is represented as 72 identical grid cells we omitted these from the analysis (so as to not bias the network), resulting in a total of 2,520 grid points.

2. Anomaly computation and trend removal

At each grid point, anomaly values were calculated by subtracting the long-term climatological mean for the corresponding month over the reference period from 1950-1999. Any remaining (linear) trend in the time series was removed by fitting a least squares regression and retaining the residual values. All analyses were performed on this anomaly data.

3. Choice of correlation coefficient threshold

The correlation threshold of 0.5 is based on parametric and non-parametric significance tests. According to the t-test with N=600, a value of r=0.5 is statistically significant well above the 99% level. In addition, randomization experiments where the values of the time series of one node are scrambled and then are correlated to the unscrambled values of the time series of the other node indicate that a value of r=0.5 will not arise by chance. The use of the correlation coefficient to define links in networks is not new. Correlation coefficients have been used to successfully derive the topology of gene expression networks (Agrawal 2002; de la Fuente et al. 2002; Farkas et al. 2003) and to study financial markets (Mantegna 1999). The choice of r=0.5, while it guarantees statistical significance, is somewhat arbitrary, but since it is used to derive communities in all models the comparisons are objective. The effect of different correlation threshold is discussed by Tsonis & Roebber (2004).
4. Community detection in networks
The goal of community detection in networks is the discovery of densely connected subgroups (or sub-systems) known to exist in many real-world data (Girvan & Newman 2002). A wide range of methods exist to efficiently solve this problem for large networks (Fortunato 2010). We utilized a popular and widely used technique called Fast Modularity optimization (Clauset et al. 2004), which (greedily) maximizes a topological network metric that quantifies the community structure called modularity (Newman 2004); analyses performed using other algorithms yielded similar conclusions. All results reported here correspond to the Fast Modularity algorithm for consistency. All 396 (98 runs x 4 fields plus 4 fields for NCEP) community structures can be found at: https://pantherfile.uwm.edu/aatsonis/public/
5. Comparing community structures

The Rand Index is a statistical tool using in clustering literature to measure the degree of overlap between two partitionings (Rand 1971). This measure is easily computed but the expected value of two random partitions does not take a constant value (e.g., zero). The Adjusted Rand Index (ARI) corrects for this scaling problem by accounting for the expectation of random partitions (Hubert & Arabie 1985). Thus, it is a more robust measure and the one selected for this study.
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	Model
	500hPa
	PSL
	TAS
	Precipitation

	bccr_bcm2_0
	1
	1
	1
	1

	cccma_cgcm3_1
	1
	1
	1
	1

	cccma_cgcm3_1_t63
	1
	1
	1
	1

	cnrm_cm3
	1
	1
	1
	1

	csiro_mk3_0
	1
	1
	1
	1

	csiro_mk3_5
	1
	1
	1
	1

	gfdl_cm2_0
	1
	1
	1
	1

	gfdl_cm2_1
	1
	1
	1
	1

	giss_aom
	2
	2
	2
	2

	giss_model_e_h
	1
	1
	1
	1

	giss_model_e_r
	1
	1
	1
	1

	iap_fgoals1_0_g
	3
	3
	3
	3

	ingv_echam4
	1
	1
	1
	1

	inmcm3_0
	1
	1
	1
	1

	ipsl_cm4
	1
	1
	1
	1

	miroc3_2_hires
	1
	1
	1
	1

	miroc3_2_medres
	1
	1
	1
	1

	miub_echo_g
	1
	1
	0
	1

	mpi_echam5
	1
	1
	1
	1

	mri_cgcm2_3_2a
	1
	1
	1
	1

	ncar_ccsm3_0
	2
	2
	2
	2

	ncar_pcm1
	1
	1
	1
	1

	ukmo_hadcm3
	2
	2
	2
	2

	ukmo_hadgem1
	1
	1
	1
	1

	TOTAL
	29
	29
	28
	29



Table S1. Data availability in the CMIP3 archive (ESG 2012). We selected all runs for which 500hPa, PSL, and TAS were available as monthly averages, resulting in a total of 28 runs from 23 different models; miub_echo_g is missing the 500hPa data and hence was omitted from our analysis.

	1
	BCCR_BCM2_0 Run 1
	15
	IAP_FGOALS_0_G Run 3

	2
	CCCMA_CGCM3_1 Run 1
	16
	INGV_ECHAM4 Run 1

	3
	CCCMA_CGCM3_1_T63 Run 1
	17
	INMCM3_0 Run 1

	4
	CNRM_CM3 Run 1
	18
	IPSL_CM4 Run 1

	5
	CSIRO_MK3_0 Run 1
	19
	MIROC3_2_HIRES Run 1

	6
	CSIRO_MK3_5 Run 1
	20
	MIROC3_2_MEDRES Run 1

	7
	GFDL_CM2_0 Run 1
	21
	MPI_ECHAM5 Run 1

	8
	GFDL_CM2_1 Run 1
	22
	MRI_CGCM2_3_2A Run 1

	9
	GISS_AOM Run 1
	23
	NCAR_CCSM3 Run 1

	10
	GISS_AOM Run 2
	24
	NCAR_CCSM3 Run 2

	11
	GISS_MODEL_E_H Run 1
	25
	NCAR_PCM1 Run 1

	12
	GISS_MODEL_E_R Run 1
	26
	UKMO_HADCM3 Run 1

	13
	IAP_FGOALS_0_G Run 1
	27
	UKMO_HADCM3 Run 2

	14
	IAP_FGOALS_0_G Run 2
	28
	UKMO_HADGEM1 Run 1


Table S2. Mapping of model runs to numbers used in Fig. 1.

	Model
	500hPa
	PSL
	TAS
	Precipitation

	bccr_bcm2_0
	1
	1
	1
	1

	cccma_cgcm3_1
	5
	5
	5
	5

	cccma_cgcm3_1_t63
	1
	1
	1
	1

	cnrm_cm3
	1
	1
	1
	1

	csiro_mk3_0
	2
	3
	3
	3

	csiro_mk3_5
	3
	3
	3
	3

	gfdl_cm2_0
	3
	3
	3
	3

	gfdl_cm2_1
	3
	3
	3
	3

	giss_aom
	2
	2
	2
	2

	giss_model_e_h
	5
	5
	5
	5

	giss_model_e_r
	9
	9
	9
	9

	iap_fgoals1_0_g
	3
	3
	3
	3

	ingv_echam4
	1
	1
	1
	1

	inmcm3_0
	1
	1
	1
	1

	ipsl_cm4
	1
	1
	1
	1

	miroc3_2_hires
	1
	1
	1
	1

	miroc3_2_medres
	3
	3
	3
	3

	miub_echo_g
	0
	5
	5
	5

	mpi_echam5
	4
	4
	4
	4

	mri_cgcm2_3_2a
	5
	5
	5
	5

	ncar_ccsm3_0
	8
	8
	8
	8

	ncar_pcm1
	4
	4
	4
	4

	ukmo_hadcm3
	2
	2
	2
	2

	ukmo_hadgem1
	2
	2
	2
	2

	TOTAL
	70
	76
	76
	76


Table S3. Data availability in the CMIP3 archive (ESG 2012). We selected all runs for which 500hPa, PSL,TAS and precipitation were available as monthly averages, resulting in a total of 70 runs from 23 different models; one run of csiro_mk3_0 and all runs miub_echo_g are missing the 500hPa data and hence were omitted from our analysis.

	1
	BCCR_BCM2_0 Run 1
	37
	IAP_FGOALS1_0_G Run 2

	2
	CCCMA_CGCM3_1 Run 1
	38
	IAP_FGOALS1_0_G Run 3

	3
	CCCMA_CGCM3_1 Run 2
	39
	INGV_ECHAM4 Run 1

	4
	CCCMA_CGCM3_1 Run 3
	40
	INMCM3_0 Run 1

	5
	CCCMA_CGCM3_1 Run 4
	41
	IPSL_CM4 Run 1

	6
	CCCMA_CGCM3_1 Run 5
	42
	MIROC3_2_HIRES Run 1

	7
	CCCMA_CGCM3_1_T63 Run 1
	43
	MIROC3_2_MEDRES Run 1

	8
	CNRM_CM3 Run 1
	44
	MIROC3_2_MEDRES Run 2

	9
	CSIRO_MK3_0 Run 1
	45
	MIROC3_2_MEDRES Run 3

	10
	CSIRO_MK3_0 Run 2
	46
	MPI_ECHAM5 Run 1

	11
	CSIRO_MK3_5 Run 1
	47
	MPI_ECHAM5 Run 2

	12
	CSIRO_MK3_5 Run 2
	48
	MPI_ECHAM5 Run 3

	13
	CSIRO_MK3_5 Run 3
	49
	MPI_ECHAM5 Run 4

	14
	GFDL_CM2_0 Run 1
	50
	MRI_CGCM2_3_2A Run 1

	15
	GFDL_CM2_0 Run 2
	51
	MRI_CGCM2_3_2A Run 2

	16
	GFDL_CM2_0 Run 3
	52
	MRI_CGCM2_3_2A Run 3

	17
	GFDL_CM2_1 Run 1
	53
	MRI_CGCM2_3_2A Run 4

	18
	GFDL_CM2_1 Run 2
	54
	MRI_CGCM2_3_2A Run 5

	19
	GFDL_CM2_1 Run 3
	55
	NCAR_CCSM3_0 Run 1

	20
	GISS_AOM Run 1
	56
	NCAR_CCSM3_0 Run 2

	21
	GISS_AOM Run 2
	57
	NCAR_CCSM3_0 Run 3

	22
	GISS_MODEL_E_H Run 1
	58
	NCAR_CCSM3_0 Run 4

	23
	GISS_MODEL_E_H Run 2
	59
	NCAR_CCSM3_0 Run 5

	24
	GISS_MODEL_E_H Run 3
	60
	NCAR_CCSM3_0 Run 6

	25
	GISS_MODEL_E_H Run 4
	61
	NCAR_CCSM3_0 Run 7

	26
	GISS_MODEL_E_H Run 5
	62
	NCAR_CCSM3_0 Run 9

	27
	GISS_MODEL_E_R Run 1
	63
	NCAR_PCM1 Run 1

	28
	GISS_MODEL_E_R Run 2
	64
	NCAR_PCM1 Run 2

	29
	GISS_MODEL_E_R Run 3
	65
	NCAR_PCM1 Run 3

	30
	GISS_MODEL_E_R Run 4
	66
	NCAR_PCM1 Run 4

	31
	GISS_MODEL_E_R Run 5
	67
	UKMO_HADCM3 Run 1

	32
	GISS_MODEL_E_R Run 6
	68
	UKMO_HADCM3 Run 2

	33
	GISS_MODEL_E_R Run 7
	69
	UKMO_HADGEM1 Run 1

	34
	GISS_MODEL_E_R Run 8
	70
	UKMO_HADGEM1 Run 2

	35
	GISS_MODEL_E_R Run 9
	71
	NCEP Reanalysis 1

	36
	IAP_FGOALS1_0_G Run 1
	
	


Table S4. Mapping of model runs to numbers used in Fig. 2.
