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This paper is a synthesis of work spanning the last 25 years. It is largely based on
the use of climate networks to identify climate subsystems and to subsequently
study how their collective behavior explains decadal variability. The central point is
that a network of coupled nonlinear subsystems may at times synchronize. If during
synchronization the coupling between the subsystems increases, the synchronous
state may be destroyed, shifting climate to a new regime. This climate shift
manifests itself as a change in global temperature trend. This mechanism, which
is consistent with the theory of synchronized chaos, appears to be a very robust
mechanism of the climate system. It is found in the instrumental records and in
forced and unforced climate simulations, as well as in proxy records spanning

several centuries.

1. INTRODUCTION

The story in this chapter starts in the mid-1980s when new
and exciting approaches to nonlinearly analyze time series
“hit the market.” At that time, very few in the atmospheric
sciences community had heard terminology such as “frac-
tals,” “chaos theory,” “strange attractors,” and the like. A few
innovative scientists, however, were experimenting with
these new ideas and soon reports of “fractality” and “low
dimensionality” in climate records, and other geophysical
data begun to surface. These climate records represented
dynamics over different time scales ranging from very long
(thousands of years) [Nicolis and Nicolis, 1984] to very short
(hours) [Tsonis and Elsner, 1988]. Virtually every report
suggested underlying attractors of dimensions between 3 and
8. These early results suggested that climate variability may
indeed be described by only a few equations. This resulted in
both enthusiasm and hope that climate variability may be
tamed after all, and in fierce opposition. Fortunately, this “tug
of war” did not eliminate interest in this new theory; rather, it
led to a deeper understanding of the nonlinear character of

29 ¢,

Extreme Events and Natural Hazards: The Complexity Perspective
Geophysical Monograph Series 196

© 2012. American Geophysical Union. All Rights Reserved.
10.1029/2011GM001053

191

nature and to new insights about the properties of the climate
system. This chapter is a small part of what we have learned
so far, and it largely draws from my work over the years.
The initial opposition to those dimension estimates seemed
to be that in all these studies, the sample size was simply too
small. While this issue has been debated extensively [Smith,
1988; Nerenberg and Essex, 1990; Tsonis, 1992, Tsonis et
al., 1994], it has not been settled beyond doubts. In a sense, it
is naive to imagine that our climate system (a spatially
extended system of infinite dimensional state space) is de-
scribed by a grand attractor let alone a low-dimensional
attractor. If that were the case, then all observables represent-
ing different processes should have the same dimension,
which is not suggested from the myriad of reported dimensions.
Tsonis and Elsner [1989] suggested that if low-dimensional
attractors exist, they are associated with subsystems each
operating at different space and/or time scales. In his study
on dimension estimates, Lorenz [1991] concurs with the
suggestion of Tsonis and Elsner [1989]. These subsystems
may be nonlinear and exhibit a variety of complex behaviors.
All subsystems are connected with each other, as in a web,
with various degrees of connectivity. Accordingly, any sub-
system may transmit “information” to another subsystem
thereby perturbing its behavior. This “information” plays the
role of an ever-present external noise, which perturbs the
subsystem, and depending on the connectivity of a subsys-
tem to another subsystem, the effect can be dramatic or
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negligible. Subsystems with weak connectivities will be
approximately “independent,” and as such, they may exhibit
low-dimensional chaos. It is also possible that the connec-
tivity between subsystems may vary in time, and this effect
may dictate the variability of the climate system.

Given the above, the question arises. If subsystems exist in
the climate system, what are they and what physics can we
infer from them?

2. SEARCHING FOR SUBSYSTEMS

2.1. Methods and Results From Observations

Answers on the nature, geographical basis, and physical
mechanisms underlying these subsystems are provided by
recent developments in graph theory and networks. Net-
works relate to the underlying topology of complex sys-
tems with many interacting parts. They have found many
applications in many fields of sciences. In the interest of
completeness, a short introduction to networks is offered
next.

A network is a system of interacting agents. In the litera-
ture, an agent is called a node. The nodes in a network can be
anything. For example, in the network of actors, the nodes
are actors that are connected to other actors if they have
appeared together in a movie. In a network of species, the
nodes are species that are connected to other species they
interact with. In the network of scientists, the nodes are
scientists that are connected to other scientists if they have
collaborated. In the grand network of humans, each node is
an individual, which is connected to people he or she knows.
There are four basic types of networks.

2.1.1. Regular (ordered) networks. These networks are
networks with a fixed number of nodes, each node having
the same number of links connecting it in a specific way to a
number of neighboring nodes (Figure 1, left). If each node is
linked to all other nodes in the network, then the network is a
fully connected network. When the number of links per node
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is high, regular networks have a high (local) clustering coef-
ficient. In this case, loss of a number of links does not break
the network into noncommunicating parts. In this case, the
network is stable, which may not be the case for regular
networks with small local clustering. Also, unless networks
are fully connected, they have a large diameter. The diameter
of a network is defined as the maximum shortest path be-
tween any pair of its nodes. It relates to the characteristic path
length, which is the average number of links in the shortest
path between two nodes. The smaller the diameter, the easier
is the communication in the network.

2.1.2. Classical random networks. In these networks, the
nodes are connected at random (Figure 1, right). In this
case, the degree distribution is a Poisson distribution (the
degree distribution, p,, gives the probability that a node in
the network is connected to k& other nodes). The problem
with these networks is that they have very small clustering
coefficient and, thus, are not very stable. Removal of a
number of nodes at random may fracture the network to
noncommunicating parts. On the other hand, they are char-
acterized by a small diameter. Far away nodes can be
connected as easily as nearby nodes. In this case, informa-
tion may be transported all over the network much more
efficiently than in ordered networks. Thus, random net-
works exhibit efficient information transfer, but they are
not stable.

2.1.3. Small-world networks. In nature, we should not
expect to find either very regular or completely random net-
works. Rather, we should find networks that are efficient in
processing information and at the same time are stable. Work
in this direction led to a new type of network, which was
proposed 12 years ago by the American mathematicians
Duncan Watts and Steven Strogatz and is called small-world
network [Watts and Strogatz, 1998]. A “small-world” net-
work is a superposition of regular and classical random
graphs. Such networks exhibit a high degree of local cluster-
ing, but a small number of long-range connections make
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Figure 1. Illustration of a regular, a small-world, and a random network [after Watts and Strogatz, 1998]. Reprinted by
permission from Macmillan Publishers Ltd: Nature, copyright 1998.



them as efficient in transferring information as random net-
works. Those long-range connections do not have to be
designed. A few long-range connections added at random
will do the trick (Figure 1, middle). The degree distribution
of small-world networks is also a Poisson distribution.

2.1.4. Networks with a given degree distribution. The
“small-world” architecture can explain phenomena such as
the 6° of separation (most people are friends with their
immediate neighbors, but we all have one or two friends a
long way away), but it really is not a model found often in the
real world. In the real world, the architecture of a network is
neither random nor small-world, but it comes in a variety of
distributions such as truncated power law distributions,
Gaussian distributions, power law distributions, and distribu-
tions consisting of two power laws separated by a cutoff
value (for a review, see Strogatz [2001]). The most interest-
ing and common of such networks are the so-called scale-
free networks. Consider a map showing an airline’s routes.
This map has a few hubs connecting with many other points
(supernodes) and many points connected to only a few other
points, a property associated with power law distributions.
Such a map is highly clustered, yet it allows motion from a
point to another far away point with just a few connections.
As such, this network has the property of small-world net-
works, but this property is not achieved by local clustering
and a few random connections. It is achieved by having a few
elements with large number of links and many elements
having very few links. Thus, even though they share the
same property, the architecture of scale-free networks is
different than that of “small-world” networks. Such inhomo-
geneous networks have been found to pervade biological,
social, ecological, and economic systems, the Internet, and
other systems [A/bert et al., 1999; Liljeros et al., 2001; Jeong
et al., 2001; Pastor-Satorras and Vespignani, 2001; Bou-
chaud and Mezard, 2000; Barabasi and Bonabeau, 2003].
These networks are referred to as scale-free because they
show a power law distribution of the number of links per
node. Lately, it was also shown that, in addition to the power
law degree distribution, many real scale-free networks con-
sist of self-repeating patterns on all length scales [Song et al.,
2005]. These properties are very important because they
imply some kind of self-organization within the network.
Scale-free networks are not only efficient in transferring
information, but due to the high degree of local clustering,
they are also very stable [Barabasi and Bonabeau, 2003].
Because there are only a few super nodes, chances are that
accidental removal of some nodes will not include the super
nodes. In this case, the network would not become discon-
nected. This is not the case with weakly connected regular or
random networks (and to a lesser degree with small-world
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networks), where accidental removal of the same percentage
of nodes makes them more prone to failure [Barabasi and
Bonabeau, 2003].

The topology of the network can reveal important and
novel features of the system it represents [Albert and Bar-
abasi, 2002; Strogatz, 2001; Costa et al., 2007]. One such
feature is communities [Newman and Girvan, 2004]. Com-
munities represent groups of densely connected nodes with
only a few connections between groups. It has been conjec-
tured that each community represents a subsystem, which
operates relatively independent of the other communities
[Arenas et al., 2006]. Thus, identification of these commu-
nities can offer useful insights about dynamics. In addition,
communities can be associated to network functions such as
in metabolic networks where certain groups of genes have
been identified that perform specific functions [Holme et al.,
2003; Guimera and Amaral, 2005]. Recently, concepts from
network theory have been applied to climate data organized
as networks with impressive results [7sonis et al., 2006,
2007, 2008; Tsonis and Swanson, 2008; Yamasaki et al.,
2008; Gozolchiani et al., 2008; Swanson and Tsonis, 2009;
Elsner et al., 2009; Tsonis et al., 2010].

Figure 2 is an example of a climate network showing the
area weighted connectivity (number of edges) at each geo-
graphic location for the 500 hPa height field [Tsonis et al.,
2006]. More accurately, it shows the fraction of the total
global area that a point is connected to. This is a more
appropriate way to show the architecture of the network
because the network is a continuous network defined on a
sphere. These data are derived from the global National
Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) atmospheric reanal-
ysis data set [Kistler et al., 2001]. The data are arranged on a
grid with a resolution of 10° latitude x 10° longitude. This
results in 36 points in the east-west direction and 19 points in
the north-south direction for a total of n = 684 points. These
684 points are assumed to be the nodes of the network. For
each grid point, monthly values from 1950 to 2005 are
available. From the monthly values, anomaly values (actual
value minus the climatological average for each month) are
then produced. Even though the leading order effect of the
annual cycle is removed by producing anomaly values, some
of it is still present as the amplitude of the anomalies is
greater in the winter than in the summer. For this reason, in
order to avoid spurious high values of correlations, only the
values for December—February in each year were considered.
Thus, for each grid point, we have a time series of 168
anomaly values. In order to define the links between the
nodes for either network, the correlation coefficient at lag
zero (r) between the time series of all possible pairs of nodes
[n(n — 1)/2=232,903 pairs] is estimated. Note that since the
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Figure 2. Total number of links (connections) at each geographic location. More accurately, it shows the fraction of the
total global area that a point is connected to. This is a more appropriate way to show the architecture of the network
because the network is a continuous network defined on a sphere. The uniformity observed in the tropics indicates that
each node possesses the same number of connections. This is not the case in the extratropics where certain nodes possess

more links than the rest.

values are monthly anomalies, there is very little autocorre-
lation in the time series.

A pair is considered as connected if the absolute value of
their cross-correlation |#| > 0.5. This criterion is based on
parametric and nonparametric significance tests. According
to the ¢ test with N = 168, a value of » = 0.5 is statistically
significant above the 99% level. In addition, randomization
experiments where the values of the time series of one
node in a pair are scrambled and then are correlated to the
unscrambled values of the time series of the other node
indicate that a value of » = 0.5 will not arise by chance.
The choice of » = 0.5, while it guarantees statistical sig-
nificance, is somewhat arbitrary. We find that while other
values might affect the connectivity structure of the net-
work, the effect of different correlation thresholds (between
0.4 and 0.6) does not affect the conclusions. Obviously, as
|rl — 1, we end up with a random network, and as » — 0,
we remain with just one fully connected community. The

use of the correlation coefficient to define links in networks
is not new. Correlation coefficients have been used to
successfully derive the topology of gene expression net-
works [Farkas et al., 2003] and to study financial markets
[Mantegna, 1999].

Returning to Figure 2, we observe two very interesting
features. In the tropics, it appears that all nodes posses more
or less the same (and high) number of connections, which is a
characteristic of fully connected networks. In the extratro-
pics, it appears that certain nodes posses more connections
than the rest, which is a characteristic of scale-free networks.
In the Northern Hemisphere, we clearly see the presence of
regions where such supernodes exist in China, North Amer-
ica, and the northeast Pacific Ocean. Similarly, several super-
nodes are visible in the Southern Hemisphere. These
differences between tropics and extratropics have been de-
lineated in the corresponding degree distributions, which
suggest that indeed the extratropical network is a scale-free



network characterized by a power law degree distribution
[Tsonis et al., 2006]. As is the case with all scale-free net-
works, the extratropical network is also a small-world net-
work [Tsonis et al., 2006].

An interesting observation in Figure 2 is that supernodes
may be associated with major teleconnection patterns. For
example, the supernodes in North America and northeast
Pacific Ocean are located where the well-known Pacific
North America (PNA) pattern [Wallace and Gutzler, 1981]
is found. In the Southern Hemisphere, we also see super-
nodes over the southern tip of South America, Antarctica,
and South Indian Ocean that are consistent with some of the
features of the Pacific South America pattern [Mo and Higgins,
1998]. Interestingly, no such super nodes are evident where the
other major pattern, the North Atlantic Oscillation (NAO)
[Thompson and Wallace, 1998; Pozo-Vazquez et al., 2001;
Huang et al., 1998] is found. This, however, does not indicate
that NAO is an insignificant feature of the climate system.
Since NAO is not strongly connected to the tropics, the high
connectivity of the tropics with other regions is masking NAO
out [Zsonis et al., 2008].

Once the edges in a network have been defined, one can
proceed with identifying the communities. Several methods
of identifying communities were used. The first is based on
the notion of node betweenness [Girvan and Newman,
2002]. For any node 7, node betweenness is defined as the
number of shortest paths between pairs of other nodes that
run through i. The algorithm extends this definition to the
case of edges, defining the “edge betweenness” of an edge as
the number of shortest paths between pairs of nodes that run
along this edge. If a network contains communities or groups
that are only loosely connected by a few intergroup edges
(think of bridges connecting different sections of New York
City, for example), then all shortest paths between two nodes
belonging to different communities must go along one of
these few edges. Thus, the edges connecting communities
will have high edge betweenness. By removing these edges,
the groups are separated from one another thereby revealing
the underlying community structure of the network.

Figure 3 illustrates the basics behind this algorithm. The
setup is adapted from the work of Newman and Girwan
[2004]. We start with a “source” node s, which is connected
to six other nodes according to the simple network shown in
Figure 3. This node is assigned a distance d; = 0 and a
weight w, = 1. Then, each node 7 adjacent to s (i.e., nodes
1 and 3) is given a distance d; = d, + 1 and a weight w; = w;
(1,1 and 1,1, respectively). Then, each node j adjacent to
nodes i is given a distance d; = d; + 1 and weight w; = w; and
so on. This procedure results in the pairs of values shown for
each node. Once distances and weights have being assigned,
one finds those nodes such that no shortest paths between
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Figure 3. An illustration of the calculation of the shortest-path
betweenness. See text for details.

any other node and s pass through them. Such nodes are
nodes 2, 4, and 6. We call these nodes “leaves” and denote
them as /. For each node i neighboring /, we assign a score to
their edge of w;y/w,. Accordingly, the score of the edges
connecting pairs 1 and 2, 3 and 4, and 5 and 6 is equal to 1.
Then, we start from the edge that is farther from s (that will
be the edge connecting nodes 3 and 5) and assign a score
that is 1 plus the sum of the scores on the neighboring edges
immediately below it, multiplied by w;/w; where node j is
farther from s than node i. We then move upward repeating
the process until node s is reached. This procedure will
identify the edge connecting nodes s and 3 as having the
highest edge betweenness. By removing it, we remain with
two communities, one consisting of nodes s, 1, and 2 and
another consisting of nodes 3, 4, 5, and 6. We can then
continue splitting the network by removing the edge with
the second highest betweenness and so on. In applications
with real data, however, this approach may not work well.
The reason is that it may be that there is more than one edge
connecting communities. In this case, there is no guarantee
that all those edges will have high betweenness. We can only
be sure that at least one will have high betweenness. For this
reason, the algorithm repeats the whole process for all nodes
in the network (i.e., considering as the source node each
node in the network at a time) and sums all the scores. This
gives the total betweenness for all edges in the network. We
then have to repeat this calculation for each edge removed
from the network. The network is then divided into two
communities by removing the edge whose removal resulted
in the lowest sum, and so on.

In order to quantify the strength of a community struc-
ture, we use a measure called the modularity. For a
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particular division into » communities, we define a n X n
symmetric matrix e whose element e;; is the fraction of all
connections in the network that link nodes in community i
to community j. The modularity [Newman and Girvan,
2004; Girvan and Newman, 2002; Newman, 2006] is
defined as

0= Tre—|[e]],

where 7r is the trace of matrix e (the sum of the elements
along the main diagonal), and ||x|| indicates the sum of the
elements of matrix x. The modularity measures the fraction
of the edges in the network that connect nodes of the same
type (within-community nodes) minus the expected value
of the same quantity in a network with the same commu-
nity divisions but random connections between the nodes.
Modularity ranges from zero (for random networks) to one
(for very strong community structure). The optimum com-
munity division is found by estimating at how many com-
munities (at what #) Q is maximum.

Figure 4 (left) shows the division into communities of
three observed climate fields (the 500 hPa height, the global
sea level pressure, and the global surface temperature fields
[Tsonis et al., 2010]. All fields are derived from the NCEP/
NCAR atmospheric reanalysis data set [Kistler et al., 2001].
Figure 4 (top) shows the community structure of the 500 hPa
height network (shown in Figure 2), Figure 4 (middle) shows
that of the sea level pressure network, and Figure 4 (bottom)
shows that of the surface temperature network. The total
number of communities is 47, 15, and 58, respectively. Many
of these communities, however, consist of very few points in
the boundaries between a small number of dominant com-
munities (think of a country whose population is dominated
by two races but also includes small groups of other races).
As is evident in Figure 4, the effective number of communi-
ties is, arguably, four in all three networks (delineated as
purple, blue, green, and yellow-red areas). The modularity of
the networks is 0.49, 0.56, and 0.59, respectively, indicating
networks that lie between completely random and strongly
communal.

Importantly, this purely mathematical approach results in
divisions that have connections with actual physics and

dynamics. For example, in Figure 4 (top left) (500 hPa height
network), we see that three of the effective four communities
correspond to a latitudinal division 90°S—-30°S, 30°S—-30°N,
and 30°N-90°N. This three-zone separation is not a trivial
separation into Northern Hemisphere winter, Southern
Hemisphere summer, and the rest of the world because when
we repeat the analysis with yearly averages rather than sea-
sonal values, we also see evidence of this three-zone separa-
tion. This separation is consistent with the transition from a
barotropic atmosphere (where pressure depends on density
only; appropriate for the tropics-subtropics) to a baroclinic
atmosphere (where pressure depends on both density and
temperature; appropriate for higher latitudes). Another pos-
sibility is that it reflects the well-known three-zone distribu-
tion of variance of the surface pressure field. Within the third
community (green area) another community (yellow-red) is
embedded. This community is consistent with the presence
of major atmospheric teleconnection patterns such as the
PNA pattern and the NAO [Wallace and Gutzler, 1981;
Barnston and Livezey, 1987]. We note here that NAO (which
has been lately suggested of being a three-pole pattern rather
than a dipole) [Tsonis et al., 2008] and Arctic Oscillation
(AO) [Thompson and Wallace, 1998] are often interpreted as
manifestations of the same dynamical mode, even though in
some cases more physical meaning is given to NAO [Am-
baum et al., 2001]. In any case, here we do not make a
distinction between NAO and AO.

In the sea level pressure network, we see again the latitu-
dinal division into three communities. Here the purple area
extends into the eastern Pacific as far as 30°N. This feature is
consistent with the interhemispheric propagation of Rossby
waves via the well-documented eastern Pacific corridor
[Webster and Holton, 1982; Tsonis and Elsner, 1996]. The
fourth community (yellow-red) embedded within the third
community (green) is found over areas in the Northern
Hemisphere where cyclogenesis is more frequently found.
Note that PNA relates to anomalies in the forcing of extra-
tropical quasistationary waves, the NAO arises from wave-
mean flow interaction, and El Nifio—Southern Oscillation
(ENSO) is known to affect extratropical cyclone variability
[Eichler and Higgins, 2006; Wang and Fu, 2000; Held et al.,
2002; Favre and Gershunov, 2006, 2009].

Figure 4. (opposite) Community structure in three climate networks. The networks are constructed from (top) the 500 hPa height field,
(middle) the surface pressure field, and (bottom) the surface temperature field. Networks constructed (left) from observations and (right)
from model simulations. The numbers below the shading key indicate the total number of communities. Because the total number of
communities is not necessarily the same in each network, the color scheme used to show the spatial delineation of the communities is not
the same in each plot. This means that the same community may be represented by a different color in the observations and in the model.
The reverse may also be possible: the same color may not represent the same community. What we should compare in Figure 4 is the spatial
distribution and structure of communities in observations and model (see text for more details).
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In the temperature network, we see a major subdivision
into two communities, one covering the Southern Hemi-
sphere (purple) and the other the Northern Hemisphere
(green). This appears to be a result of the fact that the
Southern Hemisphere is covered mostly by water (which
moderates surface temperatures), whereas the Northern
Hemisphere is mostly land (where temperature variability is
greater). In the Northern Hemisphere, we observe that em-
bedded in the green community, there is a separate commu-
nity (yellow-red) over North America and northeast Asia
where cold winter air outbreaks normally occur. This could
be an influence of the Pacific Decadal Oscillation (PDO),
which is known to affect the North American temperature
anomaly structure [Mantua et al., 1997]. The green commu-
nity, which includes the North Atlantic and Europe, may
reflect the moderation of temperature fluctuations in the
North Atlantic and Europe due to the Gulf Stream as a
different community. In the Southern Hemisphere, embed-
ded within the purple community, we see a separate commu-
nity (blue) along the 30°S latitude. This community probably
arises from the corresponding Southern Hemisphere storm
tracks, which modify temperature fluctuations. Alternatively,
it may be due to the presence of the subtropical belt. We note
here that the location of some of the communities and their
attributed teleconnection patterns may not be exactly the
location of these patterns as delineated by empirical orthog-
onal function (EOF) analysis because they are different
methods.

2.2. Sensitivity Analysis

The above analysis was repeated using detrended data as
well as resampled data to obtain grids of equal area. The
results were very similar to those in Figure 4. The division
into communities for all three networks appears consistent
with known dynamics and highlights the aspects of those
dynamics that dominate interannual to decadal climate vari-
ability. In order to further strengthen the connection between
communities and teleconnection patterns, the following ex-
periment was performed: The observed 500 hPa field height
in the Northern Hemisphere was considered, and as before,
the corresponding network and its community structure were
produced. This is the “null model,” and its community struc-
ture is shown in Figure 5 (top) where three major communi-
ties (brown, green, and blue) are observed. Then, following
the technique reported by Tsonis et al. [2008] and considering
that EOF2 of the 500 hPa field is associated with NAO, a 500
hPa height field without the NAO was produced (by project-
ing the data to all but EOF2), the corresponding network was
constructed, and its community structure was found (Figure 5,
middle). Similarly, by considering that EOF1 of the 500 hPa

Figure 5. Community structure in the network for the observed
500 hPa height field in (top) the Northern Hemisphere as well as in
the networks of synthetic 500 hPa height fields (middle) without the
North Atlantic Oscillation (NAO) and (bottom) without the NAO
and Pacific North America (PNA) (see text for details).

filed is associated with the PNA, the PNA is removed as well
(by projecting the data to all but EOF1 and EOF2) thereby
producing a field without the PNA and without NAO. Then,
the network is constructed, its community structure is found
(Figure 5, bottom). It is observed that when NAO is removed,
the blue community centered in the middle North Atlantic
(where NAO occurs) has largely disappeared. A community
identified by the blue color is still present but has shifted
eastward and away from the area where NAO occurs. The
brown community includes the tropics and a spot in North
America located where the PNA pattern is found. This spot
remains over the same area when the NAO is removed. That
this spot is associated with the community, which includes the
tropics, is consistent with the fact that the PNA is a linear
response to tropical forcing. When the PNA is removed as
well, the brown spot disappears. In Figure 5 (bottom), there is
no sign of any kind that will be consistent with the PNA or
NAO. This indicates that an “alternative model” that does not
contain the kind of structure in which we are interested gives
results outside the range of behavior produced by the “null
model.” Thus, attributing communities to teleconnection pat-
terns is justified.



A number of additional network community sensitivity
experiments were carried out. These experiments examined
the network structure for spatiotemporal variability that is
white with respect to time and spatially correlated with a
decorrelation length of 3000 km on the sphere. A typical
example of the character of the communities resulting from
analyzing this type of noise is shown in Figure 6. In general,
the following can be observed: (1) The number of commu-
nities is roughly the area of the sphere divided by the area of
a circle of radius equal to the decorrelation length, i.e., for
3000 km, there are consistently 17-20 communities. (2) The
community structure is nonrobust, as different realizations of
the noise result in the same qualitative structure of commu-
nities (i.e., their number), but their position on the sphere is
shifted. Even adding or subtracting 1 “year” from the syn-
thetic data causes a leading order rearrangement in the posi-
tion of the communities. Neither of these properties is
consistent with what we observe for communities in the sea
air temperature, sea level pressure, or 500 hPa height fields.
In those observed fields, the number of communities is much
smaller (about 5), and the structure of the communities is
robust to adding or subtracting years from the analysis.
Hence, it appears as if the observed community structure is
not consistent with the structure arising from spatially corre-
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lated Gaussian white noise, and specifically, a null hypothesis
that the observed structure can be reproduced using spatially
correlated Gaussian white noise can safely be rejected.

2.3. Model Results

Returning to Figure 4, the right plots show the division
into communities of networks constructed from model sim-
ulation of these three fields. The model used is the Geophys-
ical Fluid Dynamics Laboratory (GFDL) CM2.1 coupled
ocean/atmosphere model [Delworth et al., 2006; Gnanade-
sikan et al., 2006, Wittenberg et al., 2006; Stouffer et al.,
2006]. The 1860 preindustrial conditions control run in the
years 1950-2005 was used here. The resolution of these
fields is also 10° x 10°. For the simulated fields, the number
of communities is 27, 16, and 249, respectively. However, as
with the observations, many of these communities include
very few points in the boundaries of what appears to be about
five dominant communities. The modularities of the net-
works are 0.55, 0.49, and 0.80, respectively, indicating again
large differences from random networks. Note that because
the number of communities is not necessarily the same in the
model and in the observations, the color scheme used to
show the spatial delineation of the communities is not the

40

20

-80
0

50 100 150

200 250 300 350

Figure 6. Community structure for a spatiotemporal variability that is white with respect to time and spatially correlated
with a decorrelation length of 3000 km on the sphere. This structure is not consistent with the community structures shown
in Figure 4. Thus, a null hypothesis that the observed structure in Figure 4 can be reproduced using spatially correlated

Gaussian white noise can safely be rejected.
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same in both observations and model simulations. This
means that the same community may be represented by
different colors in the observations and in the model. The
reverse may also be possible: the same color may not repre-
sent the same community. What is relevant in comparing
model simulations with observations in Figure 4 is the spatial
distribution and structure of the most highly populated com-
munities regardless of their assigned color.

The observed general subdivision into the three latitudinal
zones in the 500 hPa height and sea level pressure net-
works, as well as the North Hemisphere-South Hemisphere
division in the surface temperature network is well captured
by the model. However, the detailed structure of the com-
munities, especially in the Northern Hemisphere, is not well
captured by the model simulations. This indicates limita-
tions in the models’ ability to adequately describe certain
dynamical aspects. For example, in the temperature network
(Figure 4, bottom right), the model does not reproduce a
common community for the North Atlantic and Europe.
This is consistent with insufficient resolution of oceanic sea
surface temperatures (SSTs) and air-sea fluxes in the model
to accurately delineate the moderation over Europe due to
the heat transport of the Gulf Stream. Similarly, in the 500
hPa height network (Figure 4, top right), the model has
difficulty reproducing the community structure associated
with teleconnection patterns, indicating model deficiencies
at simulating interannual atmospheric variability. In the sea
level pressure network (Figure 4, middle right), it misses the
Rossby waves emanation from the Southern Hemisphere to
the Northern Hemisphere, marking model deficiencies in
simulating the upper atmospheric flow over the tropical
Pacific, a well-known problem in climate simulation [Hack
et al., 1998]. In spite of these structural differences, both
model and observations agree that the number of commu-
nities is rather small.

This conclusion was verified by repeating the analysis
using two additional different algorithms to divide the net-
works into communities. The first of these two approaches is
based on finding the eigenvalues and eigenvectors of the
modularity matrix [Newman, 2006]. The modularity matrix
of the complete network is a real symmetric matrix B with
elements
b,‘j = aij - %,

2M
where a;; are the elements of the adjacency matrix (equal to
one if 7 and j are connected and zero otherwise), k; is the
number of connections of node i, and M is the total number
of connections in the network. The method to split the
network begins by estimating the eigenvalues and eigen-
vectors of the modularity matrix of the complete network.

If all the elements in the eigenvector are of the same sign,
there is only one community. Otherwise, according to the
sign of the elements of this vector, the network is divided
into two parts (communities). Next, this process is repeated
recursively for each community (using now the community
modularity matrix), and so on. The other approach is based
on a Bayesian approach to network modularity [Hofman
and Wiggins, 2008]. The results from these two approaches
(not shown) are not significantly different from those in
Figure 4. All methods delineate similar community struc-
ture with four to five effective communities. Note that due
to spatial correlations, community structures do not change
significantly when we consider the fields at a higher spatial
resolution.

The above analysis brings up the more general question as
to whether or not EOF analysis (which is based on variance
explained) is indeed the appropriate method to study climate
signals or oscillations. If variance is more important than
how the system works (i.e., underlying topology), then EOF
analysis may be a better approach. Otherwise, approaches
like the network approach may be more appropriate. If there
is an advantage of using networks, it is that the delineation of
the major components is done “holistically” (meaning not in
a set of EOFs), and it does not depend on the methodology
and the assumptions used in estimating EOFs. The differ-
ences between the two methodologies may also account for
possible mismatches in space between teleconnection pat-
terns derived using network and EOF analysis. In any case,
this is an important area of research, and it should be further
pursued.

It thus appears that the full complexity of the climate
system is, over the time scales used here, suppressed into a
small number of relevant communities (subsystems). These
communities involve major teleconnection patterns and cli-
mate modes such as the PNA and NAO, communication
between the Southern Hemisphere and Northern Hemi-
sphere, storm track dynamics, and the barotropic and baro-
clinic property of lower and higher latitudes, respectively.
Having established the existence of subsystems, we then ask
the question: what is their role and can their interaction
explain decadal climate variability?

3. INTERACTION BETWEEN SUBSYSTEMS

One of the most important events in recent climate history
is the climate shift in the mid-1970s [Graham, 1994]. In the
Northern Hemisphere 500 hPa atmospheric flow, the shift
manifested itself as a collapse of a persistent wave-3 anomaly
pattern and the emergence of a strong wave-2 pattern. The
shift was accompanied by SST cooling in the central Pacific
and warming off the coast of western North America [Miller



et al., 1994]. The shift brought sweeping long-range changes
in the climate of Northern Hemisphere. Incidentally, after
“the dust settled,” a new long era of frequent El Nifio events
superimposed on a sharp global temperature increase begun.
While several possible triggers for the shift have been sug-
gested and investigated [Graham, 1994; Miller et al., 1994;
Graham et al., 1994], the actual physical mechanism that led
to this shift is not known. Understanding the dynamics of
such phenomena is essential for our ability to make useful
prediction of climate change. A major obstacle to this under-
standing is the extreme complexity of the climate system,
which makes it difficult to disentangle causal connections
leading to the observed climate behavior. Next, a novel
approach is presented, which reveals an important new
mechanism in climate dynamics and explains several aspects
of the observed climate variability in the late twentieth
century.

First, a network from four major climate indices was con-
structed. The indices represent the PDO, the NAO, the
ENSO, and the North Pacific Index (NPI) [Barnston and
Livezey, 1987; Hurell, 1995; Mantua et al., 1997; Trenberth
and Hurrell, 1994]. These indices represent regional but
dominant modes of climate variability, with time scales
ranging from months to decades. NAO and NPI are the
leading modes of surface pressure variability in northern
Atlantic and Pacific Oceans, respectively, the PDO is the
leading mode of SST variability in the northern Pacific, and
ENSO is a major signal in the tropics. Together, these four
modes capture the essence of climate variability in the North-
ern Hemisphere. Each of these modes is assumed to represent
a subsystem involving different mechanisms over different
geographical regions. Indeed, some of their dynamics have
been adequately explored and explained by simplified mod-
els, which represent subsets of the complete climate system
and which are governed by their own dynamics [Elsner and
Tsonis, 1993; Schneider et al., 2002; Marshall et al., 2001;
Suarez and Schopf, 1998]. For example, ENSO has been
modeled by a simplified delayed oscillator in which the
slower adjustment timescales of the ocean supply the sys-
tem with the memory essential to oscillation. Monthly
mean values in the interval 1900-2000 are available for all
indices (see http://climatedataguide.ucar.edu/guidance/
north-pacific-index-npi-trenberth-and-hurrell-monthly-and-
winter).

These four climate indices are assumed to form a network
of interacting nodes [75onis et al., 2007]. A commonly used
measure to describe variations in the network’s topology is
the mean distance d(¢) [Onnela et al., 2005]:

2
Y d.

=NV 1)

(1)
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Here ¢ denotes the time in the middle of a sliding window
of width At, N=4;i,j=1,..., N, and dfj = 2(1 - |p§/-|),
where pfi is the cross-correlation coefficient between nodes i
and j in the interval [t — (At — 1)/2, t + (At — 1)/2], and D" is
the N X N distance matrix. The sum is taken over the upper
triangular part (or the distinct elements of D’). The above
formula uses the absolute value of the correlation coefficient
because the choice of sign of indices is arbitrary. The dis-
tance can be thought of as the average correlation between all
possible pairs of nodes and is interpreted as a measure of the
synchronization of the network’s components. Synchroniza-
tion between nonlinear (chaotic) oscillators occurs when
their corresponding signals converge to a common, albeit
irregular, signal. In this case, the signals are identical, and
their cross-correlation is 1. Thus, a distance of zero corre-
sponds to a complete synchronization, and a distance of v/2
signifies a set of uncorrelated nodes.

Figure 7a shows the distance as a function of time for a
window length of Af = 11 years, with tick marks
corresponding to the year in the middle of the window. The
correlations (and thus distance values for each year) were
computed based on the annual mean indices constructed by
averaging the monthly indices over the period of November—
March. The dashed line parallel to the time axis in Figure 7a
represents the 95% significance level associated with the null
hypothesis that the observed indices are sampled from a
population of a 4-D autoregressive-1 (AR-1) process driven
by a spatially (cross-index) correlated Gaussian noise; the
parameters of the AR-1 model and the covariance matrix of
the noise are derived from the full time series of the observed
indices. This test assumes that the variations of the distance
with time seen in Figure 7a are due to sampling associated
with a finite-length (11 years) sliding window used to compute
the local distance values. Retaining overall cross-correlations
in constructing the surrogates makes this test very stringent.
Nevertheless, we still find that at five times (1910s, 1920s,
1930s, 1950s, and 1970s), distance variations fall below the
95% significance level. We therefore conclude that these fea-
tures are not likely to be due to sampling limitations, but they
represent statistically significant synchronization events. Note
that the window length used in Figure 7a is a compromise
between being long enough to estimate correlations but not too
long to “dilute” transitions. Nevertheless, the observed syn-
chronizations are insensitive to the window size in a wide
range of 7 years < Af < 15 years.

An important aspect in the theory of synchronization be-
tween coupled nonlinear oscillators is coupling strength. It is
vital to note that synchronization and coupling are not inter-
changeable; for example, it is trivial to construct a pair of
coupled simple harmonic oscillators whose displacements
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are in quadrature (and, hence, perfectly uncorrelated), but
whose phases are strongly coupled [Vanassche et al., 2003].
As such, coupling is best measured by how strongly the
phases of different modes of variability are linked. The
theory of synchronized chaos predicts that in many cases
when such systems synchronize, an increase in coupling
between the oscillators may destroy the synchronous state
and alter the system’s behavior [Heagy et al., 1995; Pecora
et al., 1997]. In view of the results above, the question thus
arises as to how the synchronization events in Figure 7a
relate to coupling strength between the nodes. It should be
noted that in this study, the focus is in the complete synchro-
nization among the nodes, rather than weaker types of syn-
chronization, such as phase synchronization [Boccaletti et
al., 2002; Maraun and Kurths, 2005] or clustered synchro-
nization [Zhou and Kurths, 2006], which are also important
in climate interactions.

For our purposes here, if future changes in the phase
between pairs of climate modes can be readily predicted
using only information about the current phase, those modes
may be considered strongly coupled [Smirnov and Bezruchko,
2003]. Here in order to study coupling, symbolic dynamics
are used. For any given time series point, we can define a
symbolic phase by examining the relationship between that
point and its nearest two neighbors in time. As shown in
Figure 8, if the three points are sequentially increasing, we
can assign to the middle point a phase of 0 while, if they are
sequentially decreasing, a phase of m. Intermediate values
then follow. Notice that this procedure is totally nonparamet-
ric, as it does not compare the actual values of the points
aside from whether a point is larger or smaller than its
neighbors. The advantage of this approach is that it is blind
to ultralow-frequency variability, i.e., decadal scale and lon-
ger. Use of symbolic dynamics is appropriate in this case, as
we are primarily interested in changes in the synchronicity
and coupling of climate modes over decadal time scales. The
symbolic phase q),ﬁ is constructed separately for the four
climate indices, where j denotes the index, and » denotes the

Figure 7. (opposite) (a) The distance (see definition in text) of a
network consisting of four observed major climate modes as a
function of time. This distance is an indication of synchronization
between the modes with smaller distance implying stronger syn-
chronization. The parallel dashed line represents the 95% signifi-
cance level associated with a null hypothesis of spatially correlated
red noise. (b) Coupling strength between the four modes as a
function of time. (c) The global surface temperature record.
(d) Global sea surface temperature El Nifio—Southern Oscillation
index. The vertical lines indicate the time when the network goes
out of synchronization for those cases where synchronization is
followed by a coupling strength increase.
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Figure 8. The six states for the symbolic phase construction. The points in each triplet correspond to three consecutive
points in a time series, and their relative vertical positions to each other indicate their respective values.

year. The phases for a given year n are represented by
the complex phase vector Z, with elements Z; = = exp(iP;)).
The predictability of this phase vector from year to year
provides a measure of the coupling and is determined using
the least squares estimator

—
est

Zn+l 7MZ’7’ (2)
where M = [Z,Z"] [ZZ"]7" is the least squares predictor.
Here Z and Z, are the matrices whose columns are the vectors
Z and Z,,+1, respectively, constructed usmg allyears A
measure of the coupling then is simply ||Zn T Zn+1||
where strong coupling is associated with small values of this
quantity, i.e., good phase prediction. Note that only three
values are used to define phases rather than four or five or
any other number. The reason is that the possible number of
permutations of m values is m! Thus, if m > 3, there is at least
24 possible permutations, which will not result in large sam-
ple sizes to evaluate the predictability of the phase vector.
This quantity is plotted in Figure 7b. Figures 7c and 7d
show the global surface temperature (http://data.giss.nasa.
gov/gistemp/) and El Nifio index in our period. Figure 7 tells
a remarkable story. First, let us consider the event in the
1910s. The network synchronizes at about 1910. At that
time, the coupling strength begins to increase. Eventually,
the network comes out of the synchronous state sometime in
late 1912, early 1913 (marked by the left vertical line). The
destruction of the synchronous state coincides with the be-
ginning of a sharp global temperature increase and a ten-
dency for more frequent and strong El Niflo events. The
network enters a new synchronization state in the early
1920s, but this is not followed by an increase in coupling
strength. In this case, no major shifts are observed in the
behavior of global temperature and ENSO. Then, the system
enters a new synchronization state in the early 1930s. Initially,
this state was followed by a decrease in coupling strength, and
again, no major shifts are observed. However, in the early
1940s, the still present synchronous state is subjected to an
increase in coupling strength, which soon destroys it (at the
time indicated by the middle vertical line). As the synchronous
state is destroyed, a new shift in both temperature trend and

ENSO variability is observed. The global temperature enters a
cooling regime, and El Nifio events become much less fre-
quent and weaker. The network synchronizes again in the
early 1950s. This state is followed by a decrease in coupling
strength, and as was the case in 1920s, no major shifts occur.
Finally, the network synchronizes again in the mid-1970s.
This state is followed by an increase in coupling strength, and
incredibly, as in the cases of 1910s and 1940s, synchronization
is destroyed (at the time marked by the right vertical line), and
then, climate shifts again. The global temperature enters a
warming regime, and El Nifio events become frequent and
strong. The fact that around 1910, 1940, and in the late 1970s
climate shifted to a completely new state indicates that syn-
chronization followed by an increase in coupling between the
modes leads to the destruction of the synchronous state and the
emergence of a new state.

The above mechanism was also found in three climate
simulations. The first two are from the GFDL CM2.1
coupled ocean/atmosphere model [Delworth et al., 20006;
Gnanadesikan et al., 2006; Wittenberg et al., 2006; Stouffer
et al., 2006]. The first simulation is an 1860 preindustrial
condition, 500 year control run, and the second is the
SRESAI1B, which is a “business as usual” scenario with
CO, levels stabilizing at 720 ppmv at the close of the
twenty-first century [Intergovernmental Panel on Climate
Change, 2001]. The third simulation is a control run from
the ECHAMS model [Tsonis et al., 2007; Wang et al.,
2009]. From these model outputs, we constructed the same
indices (in the periods of 100-200 years, twenty-first cen-
tury, and years 240-340, respectively) and repeated the
above procedure to study synchronization and coupling in
the corresponding networks. In all, we found seven syn-
chronization events in the model simulations. As with the
five synchronization events in the observations in the twen-
tieth century shown in Figure 7, here as well, without an
exception in all cases when the major modes of variability
in the Northern Hemisphere are synchronized, an increase
in the coupling strength destroys the synchronous state and
causes climate to shift to a new state. Importantly, the
mechanism is found in both forced and unforced simula-
tions indicating that the mechanism is a result of the natural
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variability of the climate system. Lately, Swanson and
Tsonis [2009] extended the analysis to the updated observa-
tions in the twenty-first century and discovered yet another
consistent event signaling a new climate shift in the begin-
ning of the twenty-first century.

The shifts described above are based on careful visual
examination of the results. Once shifts have been visually
identified, one can statistically test their significance. From
the above results, it was observed [ T5onis et al., 2007; Wang et
al., 2009] that most often a shift in global temperature can
manifest itself as a trend change, but in a couple of cases, it
shows as a jump. Changes in ENSO variability, on the other
hand, can come in more ways. In this case, the possible
regimes are five. A regime of more frequent El Niflo events,
a regime of more frequent La Nifia events, a regime of
alternating strong El Nifio and La Nifia events, a regime of
no activity or alternating weak El Nifio and La Nifia events,
and a regime where the spacing between El Nifio and La Nifia
events is irregular. In all those regimes, the distribution of
ENSO index is different, and as such, the Mann-Whitney rank
sum test can be used to test for differences before and during a
shift or between shifts. The same test can be used to test
differences in global temperature tendency before and after
a jump. In cases when a temperature tendency shift manifests
itself as a trend change, the ¢ test can be used. In all, 12
synchronization events and eight shifts occurred in observa-
tions and model simulations (not including the suspected shift
in the twenty-first century observations). For all shifts (three
in observations and five in the models), it was found that the
change in ENSO variability is significant at the 90% or higher
confidence level, whereas the change in temperature tendency
is significant at the 95% or higher confidence level (see
supplementary material of Wang et al. [2009]).

The above results refer to the collective behavior of the
four major modes used in the network. As such, they do not
offer insights on the specific details of the mechanism. For
example, do small distance values (strong synchronization)
result from all modes synchronizing or from a subset of
them? When the network is synchronized, does the coupling
increase require that all modes must become coupled with
each other? To answer these questions, Wang et al. [2009]
split the network of four modes into its six pair components
and investigated the contribution of each pair in each syn-
chronization event and in the overall coupling of the net-
work. It was found that one mode is behind all climate shifts.
This mode is the NAO. This North Atlantic mode is without
exception the common ingredient in all shifts, and when it is
not coupled with any of the Pacific modes, no shift ensues. In
addition, in all cases where a shift occurs, NAO is necessarily
coupled to North Pacific. In some cases, it may also be
coupled to the tropical Pacific (ENSO) as well, but in none

of the cases, NAO is only coupled to ENSO. Thus, results
indicate that not only NAO is the instigator of climate shifts
but also that the likely evolution of a shift has a path where
the North Atlantic couples to the North Pacific, which, in
turn, couples to the tropics. Solid dynamical arguments and
past work offer a concrete picture of how the physics may
play out. NAO with its huge mass rearrangement in North
Atlantic affects the strength of the westerly flow across
midlatitudes. At the same time through its “twin,” the AO,
it impacts sea level pressure patterns in the northern Pacific.
This process is part of the so-called intrinsic midlatitude
Northern Hemisphere variability [Vimont et al., 2001,
2003]. Then, this intrinsic variability through the seasonal
footprinting mechanism [Vimont et al., 2001, 2003] couples
with equatorial wind stress anomalies, thereby acting as a
stochastic forcing of ENSO. This view is also consistent with
a recent study showing that PDO modulates ENSO [Gershu-
nov and Barnett, 1998; Verdon and Franks, 2006]. Another
possibility of how NAO couples to the North Pacific may be
through the five-lobe circumglobal waveguide pattern [Bran-
stator, 2002]. It has been shown that this waveguide pattern
projects onto NAO indices, and its features contribute to
variability at locations throughout the Northern Hemisphere.
Finally, the North Atlantic variations have been linked to the
Northern Hemisphere mean surface temperature multideca-
dal variability through redistribution of heat within the north-
ern Atlantic with the other oceans left free to adjust to these
Atlantic variations [Zhang et al., 2007]. Thus, NAO, being
the major mode of variability in the northern Atlantic, im-
pacts both ENSO variability and global temperature variabil-
ity. Recently, a study has shown how ENSO with its effects
on PNA can, through vertical propagation of Rossby waves,
influence the lower stratosphere and how in turn the strato-
sphere can influence NAO through downward progression of
Rossby wave [Ineson and Scaife, 2009]. These results, cou-
pled with our results, suggest the following 3-D superloop:
NAO — PDO — ENSO — PNA — stratosphere — NAO,
which captures the essence of decadal variability in the
Northern Hemisphere and possibly the globe.

It is interesting to compare Figure 2 and the top left plot of
Figure 4. Apparently, there are similarities (the three-zone
separation, for example), but the community algorithm iden-
tifies NAO clearly, whereas in Figure 2, as we mentioned
earlier, NAO is masked. Owing to barotropic conditions in
the tropical areas, communication via gravity waves is fast,
and as result, the information flows very efficiently resulting
in a fully connected network in the tropics. In the extratro-
pics, supernodes are found in locations where major telecon-
nection patterns are found, which, in turn, define distinct
communities in the network. It may be that in spatially
extended systems with spatial correlations extending over a
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Figure 9. The 500 hPa anomaly field composites for the periods
(top) 19691974, (middle) 1973-1978, and (bottom) 1977-1982. A
wave-3 pattern is visible in the top plot with PNA and NAO in its
negative phase being present. In the middle plot, both NAO and
PNA have, for all practical purposes, disappeared. In the bottom
plot, the field emerges as a wave-2 pattern with NAO in its positive
phase. As we explain in the text, this transition (known as the
climate shift of the 1970s) is consistent with our conjecture that
removal of supernodes makes the (climate) network unstable and
more prone to failure (breakdown of a regime and emergence of
another regime).
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characteristic scale, the connectivity pattern is related to
community structure. In any case, since the presence of super
nodes makes the network stable and efficient in transferring
information, it was speculated and shown that, indeed, tele-
connection patterns act as climate stabilizers. Tsonis et al.
[2008] have shown that removal of teleconnection patterns
from the climate system results in less stable networks,
which make an existing climate regime unstable and more
likely to shift to a new regime. Indeed, they showed that this
process may be behind the climate shift of the 1970s and
related to the dynamical mechanism for major climate shifts
discussed above. Figure 9 shows 500 hPa anomaly compo-
sites for three 5 year periods in the 1970s and early 1980s. In
the early 1970s (Figure 9, top), the 500 hPa anomaly field is
dominated by the presence of a wave-3 pattern with both the
PNA and NAO (in its negative phase) being very pro-
nounced. In the mid-1970s (Figure 9, middle), this field is
very weak, and both NAO and PNA have, for all practical
purposes, disappeared. After that (Figure 9, bottom), the field
becomes strong again, but a new wave-2 pattern with a very
pronounced positive NAO has emerged. This shift is known
as the climate shift of the 1970s. According to the Tsonis et
al. [2007] mechanism for major climate shifts, climate
modes may synchronize. Once in place, the synchronized
state may become unstable and shift to a new state. The
results of Tsonis et al. [2008] and those in Figure 9 suggest
a connection between stability, synchronization, coupling of
major climate modes, and climate shifts. This point is the
subject of our continuing work in this area, and more results
will be forthcoming in the future.

As a final note before concluding, it should be mentioned
that lately, T¥onis and Swanson [2011] extended their ap-
proach to consider proxy data for climate modes going back
several centuries. While noise in the proxy data, in some
cases, masks the mechanism, it was found that significant
coherence between both synchronization and coupling and
global temperature exists. These results provide further sup-
port that the mechanism for climate shifts discussed here is a
robust feature of the climate system.

4. CONCLUSIONS

The above synthesis describes some new approaches that
have been applied lately to climate data. The findings pre-
sented here may settle the issue of dimensionality of climate
variability over decadal scales, as they support the view that
over these scales, climate collapses into distinct subsystems
whose interplay dictates decadal variability. At the same
time, these results provide clues as to what these subsystems
might be. As such, while “weather” may be complicated,
“climate” may be complex but not complicated. Moreover, it
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appears that the interaction between these subsystems may
be largely responsible for the observed decadal climate var-
iability. A direct consequence of these results is that a dy-
namical reconstruction directly from a small number of
climate modes/subsystems may be attempted to extract dif-
ferential equations, which model the network of major
modes. Such an approach may provide an alternative and
direct window to study low-frequency variability in climate.
Work in this area is in progress and will be reported in the
future elsewhere.
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