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Global mean temperature at the Earth’s surface responds both to
externally imposed forcings, such as those arising from anthropo-
genic greenhouse gases, as well as to natural modes of variability
internal to the climate system. Variability associated with these
latter processes, generally referred to as natural long-term climate
variability, arises primarily from changes in oceanic circulation.
Here we present a technique that objectively identifies the com-
ponent of inter-decadal global mean surface temperature attrib-
utable to natural long-term climate variability. Removal of that
hidden variability from the actual observed global mean surface
temperature record delineates the externally forced climate signal,
which is monotonic, accelerating warming during the 20th century.

climate modeling | ocean variability

elineating the relative role of anthropogenic forcing, natural

forcing, and long-term natural variability in 20th century
climate change presents a significant challenge to our under-
standing of the climate system (1-7). Observations suggest the
warming of the 20th century global mean surface temperature
has not been monotonic, even when smoothed by a 10-20 year
low-pass filter. Temperatures reached a relative maximum
around 1940, cooled until the mid 1970s, and have warmed from
that point to the present. Radiative forcings due to solar
variations, volcanoes, and aerosols have often been invoked as
explanations for this non-monotonic variation (4). However, it is
possible that long-term natural variability, rooted in changes in
the ocean circulation, underlies much of this variability over
multiple decades (8-12). Quantifying whether there is a large
role for long-term natural variability in the climate system is
important, as such variability could exacerbate or ameliorate
the impact of climate change in the near future. Further, large
magnitude variability may require revisiting the types and
magnitudes of imposed forcings thought to be responsible
for the observed 20th century climate trajectory (12). More
ominously, a climate with large magnitude natural long-term
variability in general is a climate very sensitive to imposed
forcings, raising concerns about extreme impacts due to future
climate change (13).

Due to its large heat capacity, the ocean is the likely source of
natural long-term climate variability on interdecadal time scales.
The oceans can impact global mean surface temperature in
several ways; directly, through surface fluxes of heat, or indi-
rectly, by altering the atmospheric circulation and impacting the
distribution of clouds and water vapor. However, our under-
standing of how the ocean impacts the global mean surface
temperature is strongly limited by available observations, which
historically have consisted primarily of sea surface temperature
(SST) measurements.

The desire to optimally use these SST observations suggests a
two-stage approach to objectively quantify the role of internal
variability in the 20th century climate trajectory. The first step
requires linking SST anomalies to anomalies in the global mean
surface temperature. Climate models provide a means to derive
such a link, under the assumption that the current generation of
climate models captures the essence of the signature of oceanic
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variability on the global mean temperature. To see that this is the
case, we consider annual mean surface temperature fields ex-
tracted from 10 multicentury preindustrial control climate sim-
ulations, each derived from independently constructed models
containing coupled ocean-atmosphere dynamics and advanced
physical parameterizations. Such control simulations provide an
ideal laboratory for testing ideas about internal variability in the
climate because by definition all variability in these simulations
is considered to be internal.

From these simulations, we consider the annual mean global
mean temperatures and residual anomaly sea surface tempera-
ture (RASST) fields (9). Construction of the RASST fields
involves first removing the climatology from a given point, as
usual for the construction of anomaly fields, and then removing
an appropriate global mean value as well. The rationale behind
this is that there is no reason why natural long-term variability
should be orthogonal to a global warming “mode” that inevitably
dominates an empirical orthogonal function decomposition of
20th century fields. The global mean removed here is the mean
SST averaged from 60°S to 60°N. Since RASST fields have zero
global mean, they have no trivial link to the global mean
temperature.

We apply a partition of 30° latitude by 60° longitude to these
RASST fields, spanning the 60°S—-60°N seasonally ice-free oce-
anic surface. The average RASST values within these partition
elements are used as predictors in a multiple linear regression,
with the global mean temperature as the predictand. This
procedure is philosophically similar to that used to remove the
interannual El Nifo signal from observed global mean temper-
ature trends (14), with the caveat that the observed time series
are not sufficiently long to statistically identify the signature of
inter-decadal internal climate variability on the global mean
temperature, necessitating the use of long time-period climate
model integrations.

The multiple linear regression provides a series of weights linking
the RASSTs within the partition elements to the global mean
surface temperature. These weights allow for an objective, statis-
tical prediction of global mean temperature fluctuations arising
solely from SST-associated internal variability within a given model.
Testing these weights in both preindustrial control and retrospective
climate change situations suggests they can successfully identify
internal variability (see SI Text and Table S1).

Significantly, the models appear to be consistent in their
predicted global mean surface temperature response to RASST
anomalies. Fig. 14 shows the various models’ weights applied to
the observed residual anomaly SSTs derived from the extended
reconstruction of global SST based upon COADS data (15). The
global mean temperature response to observed RASST anom-
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Regression weights derived from preindustrial control climate model simulations allow for estimation of the observed signature of internal variability

in the observed 20th century global mean temperature. (A) The global mean temperature anomalies resulting from the various models’ weights applied to the
observed residual anomaly SSTs derived from the extended reconstruction of global SST based upon COADS data (14). The two outlying cold trajectories during
the 1940s belong to the GISS-ER and MIROC-MEDRES models. (B) The robust weights derived from the preindustrial control simulations. Partition elements where
the weights are notsignificantly different from zero at the P = 0.1 level (indicated by the plus/minus) are left blank. Units are °C global mean surface temperature

for °C change in SST within the partition element.

alies consistently highlights a cooling from 1900-1915; a warm-
ing from 1915-1940; a cooling from 1940 to the late 1970s, and
a return to neutral after that point. The exceptions to this
behavior are the GISS Model E-R (4.0° X 5.0°) and MIROC
3-2-MEDRES (2.8° X 2.8°), both of which have been docu-
mented as having difficulties with air-sea interaction due to
limitations in their resolution (16). All other higher resolution
models appear to be converging on a common response to
observed residual SST anomalies.

Relatively few SST partition elements actively participate in
the generation of the global mean temperature fluctuations. Fig.
1B shows that over the eight active models, the regression
weights differ significantly from zero only in the tropical Pacific
and the North Atlantic. Within this context, the spread of the
model predicted global mean surface temperatures in Fig. 1a
reflects the uncertainty of this technique (90% confidence
interval 0.08 °C). Note that this result is not directly a test of
model fidelity, but rather of linearity; what is converging here is
the model’s representations of air-sea interaction leading to
global mean surface temperature anomalies, not whether the
models have the ability to capture the magnitude or even the
spatial patterns of observed RASST variability.

Some caution is necessary in implicating the tropical Pacific
and North Atlantic as the primary sources of oceanic-forced
variability in the global mean temperature. In particular, mul-
tidecadal time-scale variability in the tropical Pacific has global
connections (9). As such, variability in the north Pacific, such as
the Pacific Decadal Oscillation, that influences the tropical
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Pacific might well be the ultimate cause of a fraction of observed
variability in the global mean temperature. Such concerns,
however, are tangential to the global mean temperature signa-
ture of oceanic natural variability, which is robust and indepen-
dent of spatial correlations that might obscure the identification
of the precise geographical source of such variability.

While the convergence of the model response to SST vari-
ability is encouraging, any technique used to identify internal
variability must not be confounded by forced patterns of climate
variability. Volcanism, solar forcing, and sulfate aerosols all have
a unique “fingerprint” of climate variability, and a useful tech-
nique must not confuse such fingerprints with internal variabil-
ity. Linear discriminant analysis, an exploratory data analysis
pattern recognition technique, provides a way to distinguish
forced from internal RASST variability when applied in an
identical fashion to modeled and observed RASST fields (17).
This analysis lifts components of slow interdecadal SST varia-
tions from faster intradecadal variations, effectively peeling back
layers of longer-time scale variability. These linear discriminants,
which consist of an RASST anomaly field and a time series that
describes the projection of that anomaly in the annual mean
RASST field, maximize the ratio of inter-decadal to inter-annual
variability, in keeping with our desire to understand the decadal-
to-century scale variability in the global mean surface temperatures
(see SI Text and Figs. S3 and S4).

Prior results suggest the leading linear discriminant RASST
contains the bulk of the anthropogenic forced climate signal (a
mixture of greenhouse gas and aerosols) (17). If our technique
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Fig.2. Global mean surface temperature calculated by applying the weights
of Fig. 1B to the linear discriminants that maximize the ratio interdecadal-to-
interannual variability in the residual anomaly SST. The shaded area denotes
the 10-90% confidence intervals from the CMIP3 20th century retrospective
model ensemble, and the heavy solid curve denotes the global mean temper-
ature signature derived from the discriminant RASST fields. (A) Global mean
surface temperature associated with the leading discriminant, which contains
the forced climate change signal (“footprint”’), showing that the weights of
Fig. 1B are not confounded by this forced pattern in either models or obser-
vations. (B) Global mean surface temperature associated with higher order
oscillatory discriminants. The model mean is indistinguishable from zero
throughout the 20th century, suggesting that the observed higher SST dis-
criminants describe internal variability. The underestimation of modeled
versus observed interdecadal variability is apparent.

is confounded by this signal, there should be a substantial trend
in the inferred global mean temperature over the 20th century
in both the models and observations, matching the trend in this
signal. The shaded area in Fig. 24 shows the 10-90% confidence
intervals for the global temperature signal associated with the
leading linear discriminant in an ensemble of 32 20th century
retrospective simulations (20c3m) taken from the CMIP3 ar-
chive. No significant trends are found, as the model mean is
indistinguishable from zero, with contamination providing at
most a warming of 0.1 °C (—0.04 °C to 0.06 °C) over the 20th
century. This is not only significantly smaller than the observed
20th century temperature increase of 0.7 °C, but does not have
the oscillatory pattern of the temperature anomalies in Fig. 14.
Hence, the weights used to define internal variability appear
more-or-less blind to this leading pattern of forced RASST
variability. The solid curve in Fig. 24 shows that the same is true
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Fig. 3. Observed GISS 21-year running mean global mean surface temper-
ature (heavy solid), along with that temperature cleaned of the internal
signal, which is the mean over the eight active models of Fig. 1 A (dashed). The
cleaned global mean temperature warms monotonically, and closely resem-
bles a quadratic fit to the observed 20th century global mean temperature
(thin solid). The standard deviation of the cleaned temperature from the
quadratic fit is 0.03 °C compared with 0.06 °C for the observed.

for the leading linear discriminant of observed RASST. Global
temperature excursions inferred from this discriminant using the
weights of Fig. 1B are indistinguishable from zero.

It is possible that oscillatory interdecadal patterns of RASST
might be forced as well, perhaps representing some lagged
feedback process in the models and in observations. If our
technique is confounded by a lagged feedback of some sort, there
should be substantial departures of the mean model inferred
global temperature from zero, indicating the presence of a forced
signal. The shaded area in Fig. 2B shows the 10-90% confidence
intervals for the global temperature signal associated with higher
order, oscillatory discriminants taken from the same ensemble of
climate simulations as above. The model mean is indistinguish-
able from zero for the entire 20th century. Hence, at least in the
models, these higher order discriminants describe internal
RASST variability.

The lack of a forced SST-associated oscillatory signal in
models suggests global temperature anomalies inferred from
higher order observed RASST discriminants should signify
internal variability. The heavy line in Fig. 2B shows the global
temperature anomaly associated with these observed oscillatory
discriminants consists of an interdecadal global mean tempera-
ture fluctuation effectively identical to that in Fig. 1A4. This
oscillatory signal is inconsistent with the model-estimated en-
velope, as models appear to underestimate inter-decadal vari-
ability by a factor of roughly three compared to the observations.
This suggests that the current generation of models has difficulty
reproducing important aspects of the observed spatiotemporal
character of inter-decadal variability (18).

The lack of an oscillatory model signal suggests that the inter-
decadal global mean surface temperature signal derived from the
observations and shown in Figs. 14 and 2B is indeed the signature
of natural long-term climate variability. Removing this internal
signature from the observed global mean temperature record
should clean up the individual and unique realization of nature,
isolating the forced climate signal. Fig. 3 shows that the resulting
cleaned signal presents a nearly monotonic warming of the global
mean surface temperature throughout the 20th century, and closely
resembles a quadratic fit to the actual 20th century global mean
temperature. Interdecadal 20th century temperature deviations,
such as the accelerated observed 1910-1940 warming that has been
attributed to an unverifiable increase in solar irradiance (4, 7, 19,
20), appear to instead be due to natural variability. The same is true
for the observed mid-40s to mid-70s cooling, previously attributed
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to enhanced sulfate aerosol activity (4, 6, 7, 12). Finally, a fraction
of the post-1970s warming also appears to be attributable to natural
variability. The monotonic increase of the cleaned global temper-
ature throughout the 20th century suggests increasing greenhouse
gas forcing more-or-less consistently dominating sulfate aerosol
forcing, although our technique cannot exclude other mechanisms
not containéd in the current generation of model forcing (22).

This result is another link in a growing chain of evidence that
internal climate variability played leading order role in the
trajectory of 20th century global mean surface temperature.
Freely evolving general circulation model trajectories have been
shown to have large global mean surface temperature excursions
similar to that observed in the early 20th century (8). These
excursions appear to be consistent with fluctuations in the
Atlantic thermohaline circulation (THC), which significantly
impacts the northern hemisphere temperature (10, 11, 23). The
apparent internal variability of the THC has been shown to have
a different relation of the SST to subsurface ocean temperatures
from that expected for forced variability in the North Atlantic
(24), consistent with the THC at least playing a partial role in the
internal variability identified here.

A vigorous spectrum of interdecadal internal variability pre-
sents numerous challenges to our current understanding of the
climate. First, it suggests that climate models in general still have
difficulty reproducing the magnitude and spatiotemporal pat-
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terns of internal variability necessary to capture the observed
character of the 20th century climate trajectory. Presumably, this
is due primarily to deficiencies in ocean dynamics. Moving
toward higher resolution, eddy resolving oceanic models should
help reduce this deficiency. Second, theoretical arguments sug-
gest that a more variable climate is a more sensitive climate to
imposed forcings (13). Viewed in this light, the lack of modeled
compared to observed interdecadal variability (Fig. 2B) may
indicate that current models underestimate climate sensitivity.
Finally, the presence of vigorous climate variability presents
significant challenges to near-term climate prediction (25, 26),
leaving open the possibility of steady or even declining global
mean surface temperatures over the next several decades that
could present a significant empirical obstacle to the implemen-
tation of policies directed at reducing greenhouse gas emissions
(27). However, global warming could likewise suddenly and
without any ostensive cause accelerate due to internal variability.
To paraphrase C. S. Lewis, the climate system appears wild, and
may continue to hold many surprises if pressed.
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Sl Text

Climate Model Evaluation. The 10 climate models examined in this
study are: GFDL CM2.0; GFDL CM2.1, HadCM3, ECHAMS5/
MPI-OM; GISS E-R; Canadian Climate Center; CSIRO; MI-
ROC-MEDRES; MRI; and NCAR CCSM. A brief overview of
their various underlying dynamical bases can be found in (1).
Preindustrial control simulations were extracted from all 10
models, and the global mean temperature from these simulations
was filtered using a third order polynomial with respect to time
to eliminate century-scale climate drift in that quantity. A
multiple linear regression was then done using the RASST values
for the partition elements shown in Fig. 1 and the global mean
surface temperature fluctuations in each model’s control simu-
lation. This regression is based upon a partition that consists of
a series of boxes, each 30° latitude by 60° longitude, spanning
180°W-180°E, 60°S—-60°N. Boxes with less than 25% ocean area
are excluded, leaving 20 total boxes in the regression. The 5-year
running mean in Fig. 14 is designed to filter out El Nino/
Southern Oscillation variability, which has a dominant period in
the 2-5 year range; no time filtering is done in Fig. 2 4 and B.
Note that the structure of the weights for the multiple linear
regression is not sensitive to the choice of filtering time scale,
consistent with a linear approach. This regression yields the
weights used in the analysis of Fig. 14. Cross-model validation
of the weights was performed; for the eight ‘“active” models
described in the primary text, using another model’s weights
typically explains roughly 50% of the interdecadal temperature
variance. An example of such agreement is shown in Fig. S1,
which shows the use of the HadCM3 model-derived weights on
the ECHAMS model simulation and vice versa.

For the forced retrospective simulations, an ensemble of
identically forced simulations for each model is extracted from
the CMIP3 archive. We then calculate the global mean surface
temperature for a specific realization relative to each model’s
ensemble mean, along with the RASST for that realization. Note
that the latter is not calculated relative to the ensemble mean, as
we seek to test whether forced RASST anomalies confound our
approach. The weights derived from the preindustrial controls
are then used to predict global mean temperature fluctuations
arising solely from SST-associated internal variability. Fig. S2
shows a particular 20th century forced simulation derived from
the ECHAMS model with a spectacular internal event consisting
of a 0.4 °C warming over the period 1940-1960, indicated by the
deviation of the simulation’s global mean temperature from an
ensemble mean over many identically forced 20th century sim-
ulations. The technique here, using the uniform robust weights
of Fig. 1B, along with the forced simulation’s RASST fields as
predictors, identifies that particular 1940-1960 warming event as
internal, but significantly, not the greenhouse gas-forced warm-
ing post-1960. Hence, our method captures the essence of
internal global mean temperature variability, while correctly
excluding variability associated with external forcing. Removing
that internal variability cleans up the individual forced climate
change simulation so that it more closely represents the signal,
which in this idealized context is the mean over many different
dynamical realizations of the climate model, all with identical
forcing.

As indicated in Table S1, this ability extends to the 20th
century retrospective simulations (32) considered here. Exam-
ination of these 20th century retrospective simulations suggests
that our approach is not easily confounded; in 24 of the 32
individual forced simulations from 10 different models exam-
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ined, the robust weights of Fig. 1B act to clean up the individual
global mean temperature trajectories, reducing the variance of a
given realization’s interdecadal global mean temperature from
the respective model’s ensemble mean on average by 11% (Table
S$1, column 3). This compares favorably to an optimal statistical
model based upon each individual ensemble itself on a model-
by-model basis, calculated using the ensemble’s RASSTs but
now relative to the ensemble mean, along with global mean
temperature along with global mean temperature anomalies
relative to the ensemble mean to construct a multiple linear
regression analogous to that shown Fig. 1. Calculating the
weights in this manner captures the maximum amount of vari-
ance a linear approach can explain in this context, as there is no
forced SST signal to confound the approach. This optimal
approach reduces the interdecadal temperature variance from its
unfiltered level in 29/32 realizations, with an average variance
reduction of 38% (Table S1, column 4). Insofar as the technique
here, with the single set of robust weights shown in Fig. 1B
captures a reasonable fraction of this maximum reduction in
variance, these robust weights of Fig. 1, and hence our technique,
appear not to be significantly confounded by forced variability.

A final test of the potential for climate change to confound this
technique is to apply the robust weights to each model’s own
climate change pattern. This is done by calculating the linear
trend in the RASSTs over the 20th century in each individual
simulation. The final column in Table S1 shows the fraction of
the global mean temperature anomaly resulting from applying
the robust weights to this trend RASST anomaly taken over a
century. In most cases, the fractional anomaly is on the order of

- a few hundredths, that is, by and large climate change RASST

anomalies lie nearly in the null space for the robust weights, just
as appears to be the case for the observed RASSTs as described
in the primary text. Curiously, many of the predicted fractional
anomalies are negative, suggesting that internal processes based
upon climate change RASST patterns in a sense act to counter
the direct global temperature anomaly forced by increasing
greenhouse gases.

Linear Discriminant Analysis. Linear discriminant analysis is an
approach taken from pattern recognition theory that allows one
to identify climate changes that does not hinge on simulations of
natural climate variations or estimates of anthropogenic forcing.
Observed interdecadal climate variations are decomposed into
several discriminants, which are mutually uncorrelated spatio-
temporal components with a maximal ratio of interdecadal-to-
intradecadal variance. The technique was introduced to the field
by Schneider and Held (2) and in the context here provides a
purely observational means by which to extract a signal from
time-evolving RASST fields. The linear discriminant analysis
here is similar to that done by Schneider and Held, with the
exception that we define our groups as contiguous 11-year
periods, with significant overlap within the groups, spanning the
period 1875-2005. The discriminants shown in the Figs. S3 and
S4 are not sensitive to this particular definition, however.

Fig. S4A4 shows the RASST pattern associated with the leading
discriminant, which should capture the bulk of the anthropo-
genic climate change signal in that field. This field has the
characteristic warming of the southern relative to the northern
hemisphere oceans, broadly considered to be the footprint of
sulfate aerosols [see (1), chapter 9]. This discriminant has a ratio
R of interdecadal to intradecadal variance of roughly 6, similar
to the ratio for the leading mode for full surface temperature
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fields (2). It is vital to note that no time dependence is imposed
upon the evolution of this discriminant; despite this, the top
panel of Fig. S3 shows that the time evolution of this pattern over
the period 1920-2000 is quite linear (> = 0.92), specifically much
more so than the global temperature itself (* = 0.67).

The two higher discriminants that are active in determining
internal global temperature anomalies are shown in the bottom
panels of Fig. S4, although following Schneider and Held (2) it
may not be meaningful to view these discriminants separately as
their variance ratios are not widely separated. Mode 2 (R = 4),
the second leading discriminant, appears to describe a pattern
similar to that of the Atlantic Multidecadal Oscillation (AMO),
with largest temperature variability found in the North Atlantic/
North Pacific. Mode 3 (R = 3), the third leading discriminant,
appears to resemble the tripole pattern associated with the

1. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: The Physical
Science Basis. Solomon S, et al., eds. (Cambridge University Press, Cambridge, United
Kingdom).
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inter-decadal variability of El Niio, with relatively small RASST
anomalies outside the Pacific. Other, higher order discriminants
beyond those described here are not associated with significant
global mean temperature anomalies. The global mean temper-
ature time series resulting from applying the robust weights of
Fig. 1B to the time-evolving patterns for modes 2 and 3 are shown
in the bottom panels of Fig. S3; Mode 2 has the appearance of
a pulse of warming centered on about 1940, while Mode 3 is more
oscillatory over the 20th century. The sum of these two time
series is what is shown in Fig. 2B, and effectively explains the
bulk of the 20th century global mean temperature signal arising
from internal climate dynamics as shown in the primary manu-
script Fig. 1. What is important here is that there is no obvious
anthropogenic forcing explanation for these modes, as both
discriminants 2 and 3 appear associated with well-known pat-
terns of internal oceanic variability.

2. Schneider T, Held IM (2001) Discrimi of
surface temperatures. J Clim 14:249-254.
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Fig. S1. State-of-the-art climate models have the ability to predict each other’s global mean temperature anomalies given only information on internal
variability. Here we show cross model predicted (ordinate) and actual (abscissa) global mean temperature anomalies using the multiple linear regression
technique acting on residual anomaly SSTs from preindustrial simulations, where internal variability is the only source of anomalies in global mean temperature.
In each panel the line indicates perfect predictability. The difference in the number of points corresponds to the difference in preindustrial control simulation
length — 500 years for the ECHAMS5 model and 340 years for the HADCM3.

Swanson et al. www.pnas.org/cgi/content/short/0908699106 3 of -2



——Run #2
= ENsemble Mean
—e—Run #2 - Internal

©
—

DNAS

Temperature Anomaly ("C)

Fig.52. Internallydriven global mean temperature anomalies may also be identified in climate models forced by increasing greenhouse gases and other natural
and anthropogenic forcings. Here we show global mean temperatures from simulations using the ECHAM5/MPI-OM model that are intended to mimic the climate
of the 20th century. Four simulations using identical forcing are examined; the heavy solid curve is the ensemble mean global mean temperature over all four
simulations, and the light solid the global mean temperature for run #2. The line with circles is run #2's global mean temperature cleaned of internal climate
variability using the multiple linear regression approach outlined here; it is apparent it more closely resembles the ensemble mean, which is the climate signal
in this context.
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Fig. $3. The global mean temperature signatures associated with the 20th century evolution of the leading linear discriminants shown in the primary
manuscript’s Fig. 2. The leading discriminant is this techniques estimate of the signature of forced climate change, and is very nearly linear over the period
1920-2000. The other discriminants are oscillatory, and their sum yields the global mean temperature perturbation shown in Fig. 28.
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Fig. S4. Global sea surface temperature anomalies associated with the leading three discriminants, with the phase consistent with the year 2000. The leading
discriminant (Mode 1) has the characteristic cold Northern Hemisphere/warm Southern Hemisphere pattern consistent with preferential cooling of the North
due to sulfate aerosol forcing. The second two discriminants have structures reminiscent of the Atlantic Multidecadal Oscillation (Mode 2) and a Pacific tripole
consistent with inter-decadal fluctuations in EI Nifio (Mode 3). The temperature scale is indicated by the color bar, scaled by the temperature anomaly in the upper
right hand of each panel.
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Table S1. Standard deviation of decadal-mean global mean surface temperature for thirty-two 20th century retrospective simulations
20c3m Simulations Decadal STD Uniform STD Self STD Confound
GFDL CM2.1 1 0.050 0.044 0.037 0.014
GFDL CM2.1 2 0.035 0.037 0.032 0.012
GFDL CM2.1 3 0.085 0.079 0.062 —-0.006
GFDL CM2.1 4 0.091 0.089 0.082 0.046
‘ ECHAM 1 0.043 0.037 0.032 0.001
‘. ECHAM 2 0.052 0.046 0.042 -0.012
" ECHAM 3 0.042 0.035 0.031 0.018
ECHAM 4 0.055 0.045 0.042 0.018
oy st 0.030 0.031 0.021 0.018
GISS 2 0.019 0.018 0.012 0.051
GISS 3 0.029 0.033 0.024 0.025
ccc 0.030 0.029 0.027 0.025
ccc2 0.024 0.025 0.022 -0.016
ccc3 0.037 0.034 0.028 —0.001
ccc4 0.023 0.022 0.026 0.011
CSIRO 1 0.041 0.039 0.029 0.064
CSIRO 2 0.035 0.040 0.026 0.059
CSIRO 3 0.060 0.051 0.045 0.059
MIROC MEDRES 1 0.039 0.033 0.031 0.031
MIROC MEDRES 2 0.027 0.024 0.031 0.031
MIROC MEDRES 3 0.039 0.033 0.028 0.005
MRI 1 0.026 0.031 0.041 -0.009
MRI 2 0.041 0.035 0.034 —0.028
MRI 3 0.045 0.039 0.028 0.016
NCAR CCSM 1 0.056 0.054 0.036 0.036
NCAR CCSM 2 0.056 0.055 0.034 -0.126
NCAR CCSM 3 0.061 0.047 0.051 -0.01
GFDL CM2.0 1 0.096 0.099 0.065 —0.052
GFDL CM2.0 2 0.085 0.072 0.059 —0.045
GFDL CM2.0 3 0.060 0.063 0.052 -0.024
HADCM3 1 0.031 . 0.029 0.027 -0.16
HADCM3 2 0.031 0.024 0.022 -0.12

The column "Decadal STD” refers to the global mean temperature standard deviation from the ensemble mean; "Uniform STD” refers to the global mean
temperature "cleaned” of internal variability using the robust weights of Fig. 1B; "Self STD” refers to the global mean temperature "cleaned” of internal variability
using each model's individual weights calculated from the ensemble itself; and "Confound” measures the fraction of the 20t century global mean temperature
change that can be attributed to internal variability, using the robust weights and each realizations RASST patterns.
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