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In this tutorial/review we revisit the problem of choosing a proper delay when we reconstruct
attractors. The effect of this delay is investigated thoroughly and a definite answer to this
problem as well as a robust procedure to reconstruct attractors is presented.
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1. Introduction

Dynamical systems possess attractors. Attractors
are limit sets on which the evolution of the sys-
tem from some initial condition is confined. For
nonlinear chaotic systems, the underlying attrac-
tor is a fractal set whose Haussdorf-Besicovitch (or
fractal) dimension is smaller than the Euclidean
dimension of the system’s state space. The state
space is a Cartesian coordinate system where the
coordinates are the variables involved in the for-
mulation of the dynamical system. Fractal objects,
unlike Euclidean objects, possess no characteris-
tic sizes or length scales [Mandelbrot, 1983], which
means that they display detailed structure on
all length scales (a property that is described
by power laws). As a result of this attribute,
fractal sets exhibit strange properties such as
infinite length boundaries enclosing finite areas.
This allows motions in the system’s state space
that correspond to trajectories that have infi-
nite length but are confined on finite areas.
Due to that, the trajectories never repeat and
never cross themselves. This makes many chaotic
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evolutions appear indistinguishable from pure ran-
dom processes.

The fractal character of an attractor does not
only imply nonperiodic orbits; it also causes nearby
trajectories to diverge. As with all attractors, tra-
jectories initiated from different initial conditions
soon reach the attracting set, but in chaotic (or
strange) attractors, unlike in limit cycles or other
periodic attractors, two nearby trajectories do not
stay close. They soon diverge and follow completely
different paths on the attractor. The divergence of
nearby trajectories is measured by the positive Lya-
punov exponents of the system. This is known as
sensitivity to the initial conditions and is a major
property of chaotic systems, which imposes limits
in predictability. As a consequence, even though the
dynamical system is described by a set of equations
and therefore is deterministic, small uncertainties
in the initial condition are amplified thereby caus-
ing the true trajectory to follow a different path in
the attractor than if there was no uncertainty. In
natural systems (such as climate) uncertainties in
the initial condition are caused by measurement
error. In mathematical systems (such as the logis-
tic equation z,;; = 4x,(1 — x,)), which can be
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iterated from an exactly defined initial value), small
errors are introduced by the unavoidable truncation
or round-off errors. For example, the five first values
of the evelution of the logistic equation from the
initial condition xg = 0.4 are:

xro = 0.4
x9 = 0.1536

r3 = 0.52002816
x4 = 0.9983954912280576
5 = 0.00640773729417263956570612432896

The digits after the decimal point increase (in fact
double) with every iteration. After seven iterations
the result carries 128 digits. After twelve iterations,
there are 2,048 digits. The number of digits is actu-
ally given by 2%, where k is the number of itera-
tions. Calculating exactly out to only 100 steps will
require a computer that will carry calculations with
2100 decimal points. This number is approximately
equal to 10%°, which is one trillion times greater
than the age of the universe in seconds. No com-
puter has been developed to handle even a thousand
digits.

Despite these limitations, the discovery of chaos
led to the realization that what appears ran-
dom may not be random but the result of low-
dimensional deterministic dynamics (i.e. described
by only a few equations), and that chaos can pro-
vide the framework to explain and describe complex
behavior and to define the limits of predictability of
natural systems.

If the mathematical formulation of a dynami-
cal system is known, then its state space is known
and investigating its properties is straightforward.
If, however, the mathematical formulation of a sys-
tem is not known or it is incomplete, then the
attractor has to somehow be reconstructed from
one or more observables (time series) of the sys-
tem. This reconstruction is achieved by consider-
ing a scalar time series x(¢) and its successive time
shifts (delays) as coordinates of a vector time series
given by

X(t)=A{xt),z(t+7),...,2(t+ (n—1)7} (1)

where n is the dimension of the vector X(¢) (often
referred to as the embedding dimension) and 7 is
an appropriate delay [Packard et al., 1980; Ruelle,
1981; Takens, 1981]. The idea behind constructing

a delay space is that the dynamics of the unknown
system are “imprinted” in a measured outcome
from that system and that delays simply approxi-
mate derivatives (in principle, any dynamical sys-
tem of m nonlinear differential equations can be
reduced to one nonlinear differential equation of
mth order).

In practice, since the dimension of the attrac-
tor of the unknown system is not known a priori,
the embedding dimension must vary until we “tune”
to a structure (attractor) whose characteristics
(fractal dimension, for example) become invariant
after some embedding dimension (an indication
that extra variables are not needed to explain the
dynamics of the system under investigation).

e The most common approach to infer the dimen-
sion of an underlying attractor is by estimating
the correlation dimension [Grassberger & Procac-
cia, 1983a, 1983b]. At some embedding dimension
n in our delay space, we have a cloud of points.
Within this cloud we may find the number of
pairs of points, N(r,n), that are separated by a
distance less than, r. If we find that this number
scales with r according to

N(r,n) o rt (2)

then the scaling exponent ds is the correlation
dimension of the cloud of points for that n. Since
the above equation is a power law, the value of ds
is estimated by the slope of the plot log N(r,n)
versus logr. We then repeat this procedure and
we check if dy reaches a saturation value Doy as
n increases. If this happens, it indicates that
we have “locked” into the underlying attractor
whose correlation dimension is Dy. Once we have
the correct embedding dimension, we can proceed
with estimating the Lyapunov exponents and per-
form nonlinear prediction.

e Since trajectories from different initial conditions
are confined on an attractor with dimension less
than that of the state space, these trajectories
have to converge onto this attractor. This con-
vergence is measured by the negative Lyapunov
exponents. Once the trajectories have reached
the attractor and if the attractor is chaotic then
they diverge. This divergence is measured by
the positive Lyapunov exponent(s). In addition
to positive and negative exponent, any contin-
uous dynamical system will have at least one
zero exponent corresponding to the slowly chang-
ing magnitude of the principal axis tangent to



the flow. In theory the Lyapunov exponents are
defined according to
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Here p;(0) is the radius of the principal axis p;
at t = 0 of an initial hypersphere of dimension n
and p;(7T) is its radius after a long time 7'. The
dimension n is the dimension of the Euclidean
state space in which the attractor is embedded.
There are as many Lyapunov exponents as coor-
dinates in the state space. We can imagine this
hypersphere being a set of initial conditions which
under the operation of the dynamics are pulled
onto the attractor and then are moved inside the
attractor. This pull and subsequent motion dis-
torts the shape of the sphere according to how
- fast and in which direction the sphere shrinks or
expands. The estimation of the Lyapunov expo-
nents from a system of ordinary differential equa-
tions is straightforward and is based on the fact
that the linearized equations, describing the local
dynamics, involve a Jacobian whose eigenvalues
provide all the exponents (see [Tsonis, 1992]).
In practice (i.e. from an observable), at first we
embed the data in some appropriate space (a
good recommendation is a space of dimension at
least 2D5). Then we monitor the motion in that
space of a point and also of points in its close
neighborhood for some time called the decom-
position length [Abarbanel et al., 1991; Brown
et al., 1991]. From this monitoring one can esti-
mate the Jacobian, which provides information
about the Lyapunov exponents. Because the lin-
earized equations provide the local dynamics such
an approach provides an estimation of the local
Lyapunov exponents. By repeating this proce-
dure for many points we can obtain an aver-
age picture which will be related to the average
Lyapunov exponents of the system.

Chaotic systems obey certain rules. Their lim-
ited predictability is due to their sensitivity to
initial conditions and to the fact that we can-
not make perfect measurements nor have infinite
computing power. However, before their predic-
tive power is lost (i.e. for short time scales) their
predictability may be quite adequate and possibly
better than the predictive power of linear statisti-
cal forecasting. The philosophy behind nonlinear
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prediction is to explore the dynamics in order to
improve predictions and identify nonlinearities in
the data. Since we need to explain the dynam-
ics, we need to have the reconstructed attractor.
Then we can begin to think of how to improve
short-term prediction. If an underlying determin-
istic mechanism exists, then the order with which
the points appear in the attractor will also be
deterministic. Thus, if we somehow are able to
extract the rules that determine where the next
point will be located in state space, then we will
obtain very accurate prediction. In general, we
can assume that the underlying dynamics can be
written as a map f of the form

w(t+T) = fr(z(t))

where in state space x(t) is the current state
and x(t + T') is the state after some time inter-
val T'. In reality, however, we cannot easily find
the actual form of the function f. A solution to
this problem is an approach called the local lin-
ear approximation [Farmer & Sidorowich, 1987].
According to this approach, the future state is
determined by a linear mapping that applies to
the evolution of a small neighborhood around the
current state. Since the linear mapping may not
be the same at each time step the overall proce-
dure is not linear. An improvement in forecasting
against other linear or statistical approaches indi-
cates nonlinearity and the presence of chaos. The
rate at which predictability decreases should also
reflect the loss of predictability due to the pres-
ence of positive Lyapunov exponents. In fact, an
exponential decrease in predictability is a feature
often used to identify chaos in data [Sugihara &
May, 1990; Tsonis & Elsner, 1992; Wales, 1991].

In the mid and late 1980s when these methods were
introduced several problems emerged. These prob-
lems had to do with sample size, defining the scal-
ing region, the statistical significance of estimated
dimension and other nonlinear measures, and the
choice of the delay parameter 7.

The problem of the sample size had to do with
what was the necessary number of points to accu-
rately estimate a dimension D. Initially, theoretical
results suggested that in order to estimate a dimen-
sion D one needed 42” data points [Smith, 1988].
This is a large number even for low values of D.
Given the small data sizes available in most dis-
ciplines, if this were true all attempts to estimate
dimensions will be in vain. This issue was clarified
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soon. It is now widely accepted that this number is
closer to 102104D) rather than 42°. This number
which is known as the Tsonis criterion has been
verified with systems of known dimensions [Neren-
berg & Essex, 1990; Tsonis, 1992; Tsonis et al.,
1993; Tsonis et al., 1994].

The issue of how to define the scaling region
(the region where Eq. (2) holds) emerged from
the fact that, due to the compressing properties
of logarithms, in a log-log plot many nonpower-
laws may appear linear. This issue was settled
by adapting the process of identifying plateaus in
the dlog N(r,n)/dlogr versus dlogr plot [Tsonis,
1992; Tsonis et al., 1994]. The idea is that if scal-
ing exists, then dlog N (r,n)/dlogr is constant and
independent of r. Such a plot provides the slope
(also referred to as the local slope) as a function of
logr. A second problem associated with the issue
of scaling was exactly how wide the scaling region
should be in order to qualify as true [Avnir et al.,
1998; Tsonis, 1998]. Yet another issue emerged
when reports appeared in the literature that certain
stochastic processes exhibiting power law spectra
may fool the algorithms used to estimate dimen-
sions and make nonlinear prediction [Osborne .&
Provenzale, 1989], thereby falsely indicating chaotic
dynamics.

In view of the above issues, the issue of the
statistical significance of a result linking a data
set to low-dimensional chaos arose from the desire
to provide more confidence about the results. In
this effort the generation of surrogate data [Theiler
et al., 1992; Schreiber & Schmitz, 1996] emerged
as a powerful tool. In general, surrogate data are
random data, which however, preserve the autocor-
relation function and power spectra of the original
data set. They are usually generated by invert-
ing the spectra of the original data and random-
ize the phases. This, while it destroys whatever
dynamics are present, preserves the autocorrela-
tion in the data. By generating a large num-
ber of such surrogate records one is then able to
test the null hypothesis that the estimated dimen-
sion, or Lyapunov exponent, or scaling region,
is statistically significant at a desired significance
level. At the same time specific tests to address
problems with limited scaling or questionable
stochastic processes were proposed [Tsonis, 1992;
Tsonis & Elsner, 1995].

The final issue of the proper choice of the
delay parameter in Eq. (1) is the subject of
this tutorial/review. Equation (1) provides no

guidance about what 7 should be. Initially, it was
recommended that a delay parameter should be
chosen so that it delineates nearly uncorrelated
points in the reconstruction. Employing too small
of a 7 could result in highly correlated points,
which tend to arrange themselves on narrow bands
in phase space thus leading to an underestima-
tion of the actual dimension. Possibilities ranged
from the first zero of the autocorrelation func-
tion of the data (a linear measure, but easily
estimated), to the time lag where the autocorre-
lation function attains the value of 1/e, to the
first minimum of the mutual information func-
tion (a nonlinear measure not easily estimated)
[Tsonis et al., 1994].

By the early 1990s all the above issues were
thus addressed and a certain procedure was in place
for proper nonlinear time series analysis. However,
while the issues of sample size and scaling were
addressed extensively and rigorously, the issue of
7 was never really addressed rigorously either theo-
retically or experimentally. There was always some
arbitrariness about the first zero of the autocorre-
lation function or the first minimum of the mutual
information. The reason for this was that in the mid
1980s computer memory and speed was not ade-
quate enough to research this issue in detail. Now
that computer speed and memory is not a problem,
we can go back and investigate this issue in detail.
What we find is indeed very interesting. In what
we present next it is assumed that a sufficiently
large number of points (sample size) are available.
Thus, issues of sample size requirement do not
apply here.

2. The System Used

In order to demonstrate the effect of the delay
parameter we will employ the Lorenz system
[Lorenz, 1963]. Edward Lorenz, an atmospheric sci-
entist at MIT, who was trying to explain why
weather is unpredictable, reduced the complicated
physics of the atmospheric circulation into three
simple nonlinear ordinary differential equations,
which modeled the behavior of a fluid layer heated
from below. This is an approximation of what hap-
pens basically every day in the lower atmosphere.
The sun rises; the surface absorbs solar radiation
and gets warm. Subsequently, the air gets warm by
contact with the warmer surface and rises. This ris-
ing motion leads to convective turbulent motion.
The mathematical formulation of this system is the



following:
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where roughly speaking x is proportional to the
intensity of convective motion, y is proportional to
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the horizontal temperature variation, z is propor-
tional to the vertical temperature variation, and
a, b, c are constants. Figure 1 shows details of this
system’s attractor for a = 10, b = 28 and ¢ = 8/3
after integrating the above equations for 10,000
time steps, 5,000 of which are colored blue and 5,000
green. Panels (a)-(c¢) show the attractor from three
different perspectives. Panel (d) is a close up reveal-
ing the fine nonrepeating fractal structure of the
attractor. The apparent yellowish parts in the figure
are very close blue and green lines, which due to

(c)

Fig. 1. The Lorenz [1963] attractor for a

(d)

10, b = 28 and ¢ = 8/3 after integrating the above equations for 10,000 time

steps, 5,000 of which are colored blue and 5,000 green. Panels (a)—(c) show the attractor from three different perspectives.
Panel (d) is a close up revealing the fine nonrepeating fractal structure of the attractor. The apparent yellowish parts in the
figure are very close blue and green lines, which due to their closeness cannot be distinguished by the photographic device
thereby appearing yellowish. [Figure is courtesy of Gottfried Mayers-Kress and has appeared in the book From Cardinals to

Chaos, Cambridge University Press, 1989.]



4234  A. A. Tsonis

their closeness cannot be distinguished by the pho-
tographic device thereby appearing yellowish. The
attractor is definitely not planar but it consists of
two rathet thin lobes. Note that while here we will
present results from the analysis of the Lorenz sys-
tem, the general conclusions have been verified with
other dynamical systems.

2.1.

Let us now assume that instead of the complete
description of the Lorenz system we have a record
of one of the variables, say z(t) (Fig. 2). We obtain
this “observable” by integrating the above system
using the fourth order Runge-Kutta method and a
time step of 0.01. Figures 3 and 4 show the auto-
correlation function and mutual information (solid
line) for this observable. The autocorrelation func-
tion attains its first zero at about a lag of 200 and

Reconstructing the attractor

Lorenz attractor

time

Fig. 2. A time series of the z variable of the Lorenz system
(courtesy of Eric R. Weeks).
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Fig. 3. The autocorrelation function of the x variable of the

Lorenz system.

the mutual information attains its first minimum
after about 12 time steps. We then proceed with
reconstructing the attractor from this observable.
Figures 5 and 6 show the reconstructed attractor in
three dimensions using a time delay ranging from
2 to 200. In order to visualize what happens as 7
increases, in Fig. 5, 7 is varied very slowly. What
we observe is that even at the very small 7 = 2 the
two lobes of the attractor are visible. As 7 increases
the attractor widens (stretches) in one direction and
folds on the top and bottom. This stretching and
folding continues as 7 keeps on increasing eventu-
ally resulting in a rather amorphous structure. A
similar picture is observed when another variable
(z(t)) is considered (see Fig. 7). The reason for this
is that a larger 7 teams values that are more sep-
arated from each other in the time series. When
7 becomes too big there is simply no correlation
between the points. These figures suggest that a 7
corresponding to a zero in the autocorrelation func-
tion of z(¢) may not be appropriate. A delay close to
the first minimum of the mutual information func-
tion may be more appropriate even though a smaller
7 (4 or 6) gives a more realistic delineation of the
attractor. So, what is really the proper 7 when it
comes to reconstructing the attractor?

The sequence of reconstructions in Figs. 5-7
and the stretching and folding observed as 7
increases reminds us of how a strange attractor is
born. We all know from theory that a volume ele-
ment in state space under the action of a chaotic
flow will at first be pulled along the direction of
greatest instability. This stretching, however, can-
not occupy more and more volume (because the
attractor is confined in a finite area in state space).
The mechanism that prevents this is folding. Thus,
the attractor has to fold onto itself. Successive
iterations of this process result in the asymptotic
attractor with folds within folds ad infinitum (i.e. a
fractal object). The fact that an increasing 7 emu-
lates this process provides a key observation, which
points to a way of estimating the proper 7: the
optimum 7 should be the one that approximates
more closely the actual stretching and folding of
the attractor. Since the stretching and folding is a
physical property, it may not relate well to statis-
tical measures such as the autocorrelation function
or mutual information. This will explain why nei-
ther choices of 7 give consistent results [Martinerie
et al., 1992].

Now let us assume that our attractor is a set of
points in a two-dimensional state space (Fig. 8, top)
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Lorenz Time Series Mutual Information - All Coordinates

25 . .

T T T T T T it

30 40 50 60 70 80 90 100
Number of Steps Ahead

Fig. 4. The mutual information function of the x variable of the Lorenz system (solid line).
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Reconstruction of the Lorenz attractor from x(t).
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Tau=4 Tau=10
20 20
0 0
5 20 20 20
0 0 0
20 -20 20 -20

0
-20 -20 -20 -20

Tau =60 Tau=70 Tau =200

Fig. 6. Same as Fig. 5 but for additional delay parameters 7.

Tau=4 Tau=10 Tau =20
50 50 50
50 50 50 50 50
00 00 00

Fig. 7. Same as Fig. § but for the variable z(t).



X(t+7)

x(t)

slope

log r

Fig. 8. A hypothetical cloud of points embedded in two
dimensions and the expected slope versus log r function.

having a correlation dimension Dy. How does the
slope versus logr plot would look like? For an
embedding dimension of two, for scales smaller than
the diameter of the attractor, the plot will show a
plateau at slope = ds. However, since the attrac-
tor has a finite diameter, for distances greater than
this diameter N (r,n) will reach a saturation value
and will not change further with r. Because of that,
the dlog N(r,n)/dlog r function (i.e. the slope) will
tend to zero for very large r’s. These qualitative
characteristics of the slope as a function of space
scale are illustrated in Fig. 8 (bottom). Now what
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Fig. 9. Expected features of the slope versus log r function

when data in Fig. 8 are embedded in a dimension higher
than two.

do you think will happen if we embed the data
in three dimensions? In this case we distribute the
points in the attractor into a much larger volume.
The effect of this is that the density of points per
unit volume decreases. Now, a pair in two dimen-
sions separated by a distance r is separated by a
longer distance. This “depopulation” results in poor
statistics over small scales and manifests itself as
fluctuations about the plateau. On the other hand,
because we have embedded the attractor in a higher
dimension than needed, the larger scales will appear
higher-dimensional than they actually are (much
like when we curl a sheet of paper; the smaller scales
remain planar but in large scales the sheet of paper
appears three-dimensional). Thus when we embed
the data in higher than needed dimension, the local
slope plot will show large fluctuations at very small
scales, a plateau at intermediate scales at the level
slope = ds, a tendency for higher slope values at
large scales (manifesting itself as a “hump”), and
finally an approach to zero values for very large
scales (Fig. 9). It follows, that a proper embedding
is one that minimizes the distortions at the two ends
resulting in a well defined plateau over the widest
range of scales.

Now recall from above that a proper 7 is one
that emulates the properties of the attractor closely
and that the effect of an increasing 7 is also to
pull nearby points apart. One should then expect
a similar behavior in the slope versus logr plot as
7 varies. If this is true then the proper 7 should
be the one that also results in the widest and best
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defined plateau. Thus, we should be able to define
the proper 7 as well as the dimension of the attrac-
tor in a common procedure where the slope versus
log r plot is produced by simultaneously varying the
embedding dimension and delay parameter.

This procedure is demonstrated in Fig. 10.
Each panel corresponds to a specific 7 and shows

1z
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1 3 4 13 1r 21 25 29 33 37 d1 457 43
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Fig. 10.

the first derivative of log N(r,n) versus logr func-
tion (or local slope) for embedding dimensions 2, 3
and 4. As we mentioned earlier a plateau in such
a graph identifies the scaling region. If this plateau
reaches a constant level as the embedding dimen-
sion increases, it indicates that we have tuned to
the invariant attractor. This figure displays some
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Slope versus log r plots for z(t) and for varying embedding dimension and delay parameter. The x-axis labeling from
1-49 reflects the fact that N(r,n) was calculated for 50 r values.



important features. First, we observe the expected
behavior from Fig. 9. For any fixed 7, as the embed-
ding dimension increases, the fluctuations at small
scales increase and the “hump” over the larger
scales becomes more and more pronounced. The
same is observed if we fix the embedding dimen-
sion and vary 7. This demonstrates that whether
we fix 7 and vary the embedding dimension or we
fix the embedding dimension and vary 7, the two are
equivalent. The proper (or optimum) 7 should then
be the one that, in graphs like the above, delineates
the widest plateau. From our analysis it appears
that this occurs around 7 = 10 where Dy is slightly
above 2.0 (this value of D is in very good agree-
ment with its estimates in the literature of 2.05).
It is interesting to note that in Fig. 10 basically all
7's provide a very close estimation of the dimen-
sion. Now that we understand what an increasing
7 does to the attractor (stretching and folding it)
we can explain this result easily. Topologically, a
stretching or folding does not affect the dimension
as long as this action does not tear the structure or
opens holes in it. Thus, we find that basically any 7
will do when it comes to dimension estimates, even
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very small ones (this however, may not be true as
we will see later for estimating other properties of
attractors). Note that the proper 7 in this example
is consistent with the first minimum of the mutual
information. This does not prove that the first mini-
mum of the mutual information is always the proper
choice of 7. It has been shown [Martinerie et al.,
1992] that this choice is not always consistent.

2.2. Nonlinear prediction

Let us now see what the effect of 7 is on nonlin-
ear prediction. As we mentioned in the introduction
once we have an appropriate embedding we can con-
sider a terminal point and its close neighborhood.
Then we can find the linear mapping of the motion
of its neighbors and extrapolate it to get a pro-
jection of the terminal point into the future. The
performance of nonlinear prediction is evaluated by
estimating the correlation between predicted and
actual values as a function of the prediction time
step [Farmer & Sidorowich, 1987; Wales, 1991].
Figure 11 shows this correlation for six different
delays. We observe that prediction is very good
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@
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Fig. 11.

Nonlinear prediction for different delays.
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and more or less identical for 7 = 1, 7 = 4 and
7 = 10. For greater delays the accuracy of predic-
tion decreases noticeably. Thus, unlike our conclu-
sions with.dimension estimates, here we cannot say
that any delay will do a good job. The folding and
stretching effect of increasing 7 is in addition to that
of the attractor. As such, when a greater than the
optimum delay is used, this “extra” action expands
the neighborhood and mixes points in the attractor
more than necessary. This affects the local linear
mapping thereby decreasing predictability. Inter-
estingly, a delay parameter smaller than the opti-
mum does not have this effect. We suspect that the
squeezing of the attractor for very small delays sim-
ply makes the neighborhood denser (as if we had
more points available). As a consequence the results
are basically identical for smaller delays.

2.3. Estimating the Lyapunov
exponents

Finally let us examine the effect of 7 in the esti-
mation of the Lyapunov exponent spectrum. The
divergence or convergence rate of nearby trajecto-
ries in strange attractors is not uniform. Depending
on the region in the attractor the divergence or con-
vergence rate may be greater or smaller. As such the
Lyapunov exponents are not constant but they vary
as the trajectories move on the attractor. Figure 12
illustrates this by showing the positive Lyapunov
exponent of the Lorenz system along a trajectory.
The overall Lyapunov exponent is the average of all

Fig. 12.

system along a trajectory. Green represents smaller local

The positive Lyapunov exponent of the Lorenz

divergence rates and brown represents larger local rates.
[Figure courtesy of Dr. J. Nese.]

local Lyapunov exponents along a long trajectory. In
order to estimate the local Lyapunov exponents at a
given location we consider our representative point
in the reconstructed state space and the points in
a small neighborhood around it. These neighbors
have been introduced during the reconstruction at
earlier or later times and play the role of small fluc-
tuations about the reference point from which other
“nearby” trajectories can be obtained. The motion
of this neighborhood in a predefined time interval
(called the decomposition length L) provides the

‘information to estimate the Jacobian of these small

deviations about the reference point, whose eigen-
values provide an estimate of the Lyapunov expo-
nent spectrum at this location [Abarbanel et al.,
1991; Brown et al., 1991]. By shifting the decompo-
sition length one time step at a time we can obtain
a record of any local Lyapunov exponent along the
trajectory. The estimated exponents depend on the
decomposition length and approach the true values
of the system for a sufficiently long L. Figure 13
shows the first (top). the second (middle), and
third (bottom) Lyapunov exponent along the tra-

jectory (location number) for five different delays.

In order to compare our results to those reported
in the literature, the observable x(t) used in this
figure was obtained by integrating the Lorenz sys-
tem with a time step of 0.05 and the decomposition
length was assumed equal to 50 (in this case the
first zero of the autocorrelation function is about
40 and the first minimum of the mutual informa-
tion is 2). For this value of decomposition length
the expected average Liyapunov exponents of the sys-
tem are (A\;) ~ 2bits/sec, (\2) ~ 0bits/sec, and
(A3) =~ —18bits/sec [Abarbanel et al., 1991; Brown
et al., 1991]. Note that, because of the integration
time step used here, in order to derive the actual
exponents from Fig. 13 we need to divide the values
by 0.05. Accordingly. we find that from the above
choices the one that is the closest to the expected
values is 7 = 1. For this delay we estimate that
(A1) =~ 0.085/0.05 = 1.7 bits/sec, (Ay) ~ 0.0/0.05 =
0bits/sec, and (A\3) ~ —0.85/0.05 = —17bits/sec
(note that this delay would correspond to 7 = 5
if the integration step were 0.01). From Fig. 13 we
observe, as in the case with nonlinear prediction,
that not any delay will provide useful results. A
7 = 2 (which corresponds to 7 = 10 when the inte-
gration step is 0.01) gives values slightly closer to
the expected estimates (not shown in Fig. 13). How-
ever, for greater delays all Lyapunov exponents are
overestimated significantly; a result that can lead
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Fig. 13. The (a) positive, (b) zero, and (c) negative Lyapunov exponents of the Lorenz system as a function of the location
number (i.e. 1,000 points along a trajectory).
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to false interpretation of the underlying physics. On
the other hand, estimates based on smaller than the
optimum delays are rather useful, probably for the
same reason that very small delays result in very
good prediction.

3. Concluding Remarks

When we reconstruct the dynamics from observ-
ables our first issue is to estimate the proper delay
and the dimension of the attractor. Once this is
done effectively, then we can embed the data in
the appropriate space and perform nonlinear pre-
diction and estimate the Lyapunov exponents. Here
we show that an effective way to tackle the first
problem is to take advantage of the fact that an
increasing delay emulates the general properties of
stretching and folding in strange attractors. In this
case the proper delay is the one that approximates
these properties best. We then show that the proper
delay and embedding dimension can be simulta-
neously estimated by examining the slope versus
logr plots and choose the optimum delay as the
one resulting in the cleanest and widest plateau.
There is no need to resort to measures such as the
first minimum of the mutual information or the first

500
Location Number

(c)
Fig. 13. (Continued)

I I I I
600 700 800 900 1000

zero of the autocorrelation function. Such measures
are statistical and may not have a direct connection
to the underlying physics and dynamics, which dic-
tate the proper stretching and folding action of the
attractor. Be this as it may, we also demonstrated
that one can in effect get a very good idea of the
proper embedding dimension even with very small
delays, and that even with very small delays we
can obtain very reliable dimension estimates, pre-
diction and Lyapunov exponent estimates. Having
said that, when we investigate nonlinearity in time
series one has to apply all available approaches and
research their collective behavior. With the com-
puter power available today there is no reason not
to thoroughly apply the methods described in this
tutorial and arrive at a consistent and accurate
result.
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