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ABSTRACT

Ensemble prediction has become an indispensable tool in weather forecasting. One of the issues in
ensemble prediction is that, regardless of the method, the prediction error does not map well to the
underlying physics (i.e., error estimates do not project strongly onto physical structures). This paper is
driven by the hypothesis that prediction error includes a deterministic component, which can be isolated and
then removed, and that removing the error would enable researchers and forecasters to better map the error
to the physics and improve prediction of atmospheric transitions. Here, preliminary experimental evidence
is provided that supports this hypothesis. This evidence is provided from results obtained from two low-
order but highly chaotic systems, one of which incorporates atmospheric flow transitions. Using neural
networks to probe the deterministic component of forecast error, it is shown that the error recovery relates
to the underlying type of flow and that it can be used to better forecast transitions in the atmospheric flow
using ensemble data. A discussion of methods to extend these ideas to more realistic forecast settings is

provided.

1. Introduction

Since the midlatitude atmosphere is characterized by
variability, persistent flow patterns often lead to
anomalous sensible weather (e.g., temperature, precipi-
tation, etc.). Yet, one challenge in short- to medium-
range weather prediction is anticipating transitions in
the large-scale atmospheric flow. Hence, an improved
understanding of the physics and predictability of such
flow transitions is desirable.

The fundamental problem of weather forecasting is
to identify the range of possible meteorological sce-
narios that might evolve from a given initial state, and
determine whether multiple solutions have high prob-
ability (low confidence in an individual solution) or if a
single evolution is the most likely (high confidence).
This probabilistic view is necessitated by the complexity
of atmospheric dynamics (e.g., Lorenz 1963; see a gen-
eral review in Kalnay 2003). Specifically, limits to de-
terministic predictability originate from two general
sources: model error and initial condition error.

Model error arises because of imperfections in our
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characterizations of the laws of nature, arising either

_through parameterization of complex and/or poorly un-

derstood physics (such as boundary layer and cloud mi-
crophysical processes) or an inability to resolve atmo-
spheric processes smaller than a certain threshold (e.g.,
atmospheric convection with a 10-km gridpoint model),
with resultant upscale error growth.

Initial condition error arises because of the finite spa-
tial availability of observed data (including some vari-
ables that are not observed at all), missing data, inac-
curacies in the data, and imperfect analysis techniques.
All of these errors, even with a perfect model, will grow
nonlinearly over time, eventually swamping the fore-
cast signal (Lorenz 1963, 1965, 1969).

The rate of this error growth and hence the lead time
at which predictability is lost depends on the stability of
the evolving flow (Lorenz 1965), which in addition is
affected by factors such as the large-scale flow pattern,
season, and geographical domain (Lorenz 1984, 1990).
Ensemble forecast systems have been developed as a
means to quantify forecast uncertainty, using a variety
of methods to simulate analysis and model uncertain-
ties. In the midlatitudes, numerical weather prediction
models are often considered to be good enough that to
a first approximation, forecast error growth at medium
range can be attributed primarily to the process of
growing instabilities in a chaotic system that result from
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initial condition uncertainties. This “perfect model” as-
sumption is more prone to failure, however, for short-
range forecasts where small-scale features may depend
crucially on the physics (e.g., convection). Since the
goal of this work is to explore flow transitions, with an
inherent time scale beyond that of short-range fore-
casts, we will not consider model error further in this
preliminary work.

A deeper understanding of the physical evolution of
error structures can potentially reveal much concerning
both the natural dynamics of the atmosphere and
model deficiencies (and hence, lead to a better under-
standing of nature). Currently, there are four primary
methods for assessing analysis uncertainty: breeding
(used at the U.S. National Centers for Environmental
Prediction), singular vectors (used at the European
Centre for Medium-Range Weather Forecasts), Kal-
man filters (currently a topic of active research), and
Monte Carlo methods (used at the Canadian Meteoro-
logical Centre).

Although the technical details of each of these meth-
ods are distinct (see Kalnay 2003 for an overview), they
each rely on a single concept: initial analysis uncertain-
ties are simulated by adding small perturbations (within
the limits of the uncertainty of the analysis) to the un-
perturbed (control) analysis. It is important to recog-
nize that these techniques are intended to simulate
analysis uncertainty, not necessarily to reveal intrinsic
dynamics. Tribbia and Baumhefner (2004) argue that
these uncertainties seed the baroclinically active region
of the spectrum and organize over time on the synoptic
scales, extracting energy from the larger-scale flow
rather than the smaller scales.

In the breeding method, analysis errors are consid-
ered to be filtered forecast errors. As such, much of the
analysis error may represent phase error, a typical
problem in data-sparse regions. The singular vector
method attempts to directly calculate forecast error,
under the assumption that the components of the error
that grow most rapidly will dominate. Since singular
vectors are mathematical constructs rather than physi-
cal structures, the actual error may project more or less
strongly onto these growing patterns. Not surprisingly,
experience with this method suggests that these pat-
terns do not “map” directly onto locations that are con-
sistent with synoptic experience as to the origins of
forecast uncertainties (e.g., the position of an upper-
level jet streak). The Kalman filter method uses esti-
mation theory to more accurately express the breeding
method’s fundamental hypothesis that analysis errors
are filtered forecast errors. As such, this method likely
preferentially identifies phase errors, which are consis-
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tent with the underlying attractor. The Monte Carlo
method perturbs all available observations simulta-
neously with random numbers of realistic amplitude
(with respect to error statistics). Hence, no direct dy-
namics can be inferred from this method.

It is well known that, given a nonlinear system, the
evolution of small fluctuations is given by the linearized
equations

x' = Jx, (1)

where J is the Jacobian. These fluctuations can be
thought of as an unbiased measurement error, e, and/
or a biased error arising through the data assimilation
process, e, which contribute to the forecast error. Since
the Jacobian implies deterministic operations, some re-
coverable dynamics are included in the error. This con-
clusion also holds for the more general, nonlinear prob-
lem.

In this paper, we propose a method that capitalizes
on recovering part of the forecast error provided by any
of the above ensemble approaches and relating that er-
ror recovery to the underlying physics of the flow. We
demonstrate successful application of this method to
two well-known, low-dimensional chaotic systems (in-
cluding a simple climate model with identifiable flow
patterns). The use of simple models to gain insights into
complex problems has a rich history in meteorological
research [recent examples are the investigations of the
dynamics of model error by Nicolis (2003, 2004)]. The
low-order modeling approach is undertaken with the
expectation that it may reveal general principles, the
details of which will need to be determined by resorting
to studies using more complex models. This topic is
addressed in the concluding discussion.

2. Examples
a. The logistic equation

First, we consider a very simple mathematical system,
which however can be extremely sensitive to initial con-
ditions. It is the logistic equation

Xn+l = l“‘Xn<1 - X”), (2)

where p is a parameter. In this very simple discrete
system, future values are obtained by successive itera-
tions. The system exhibits a variety of dynamics for
different values of w. For w = 4 the system is strongly
chaotic with a corresponding Lyapunov exponent equal
to In (2). This means that if the initial condition is speci-
fied with an error of less than 1%, the forecast is no
better than “climate” after approximately six iterations.
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FI1G. 1. Logistic equation (solid line) and associated “perturbed”
initial state (dashed), through four iterations.

For the experiments with the logistic model, the op-
erational data assimilation cycle was mimicked: an
analysis was constructed, consisting of a weighted av-
erage of observations (incorporating an unbiased error
enpo) and a first guess (obtained from a previous short-
term forecast from the model). This analysis was used
as the basis for the next forecast, and the short-term
forecast from that run was then cycled back into the
succeeding analysis. For all our tests, the set of forecasts
were extended from two to four iterations into the fu-
ture, a time scale for which substantial error growth
occurs in the logistic equation with these error charac-
teristics (Fig. 1).

Error recovery was investigated using neural net-
works. Neural networks are nonlinear tools that are
often used to model nonlinear deterministic dynamics
when the actual equations describing the dynamics are
not available. In its simplest form the architecture of a
neural network involves a set of inputs p(i) and an out-
put Q. Using a training sample the inputs are assigned
optimum weights, w(i), and then the inner product, P =
Sp(i)w(i), is estimated. The final output Q is then ob-
tained by passing P through a nonlinear function f(x).
Such a network is called a two-layer network since it
involves a layer for the inputs and a layer for the out-
put. Neural networks can become more complex by
adding hidden layers or by including more than one
output. In general, with the help of known outputs
(from the training sample) the network, initially set to
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TaBLE 1. Correlation coefficient between forecasts and “truth”
for the logistic and Lorenz (1984) models. The Lorenz (1984)
model verifications are stratified according to the low- and high-
amplitude flow patterns and pattern transitions (low to high and
high to low amplitude).

Deterministic

Neural
Model forecast network
Logistic equation—Two iteration 0.80 0.90
simulations
Lorenz (1984)—Two time units 0.77 0.87
(low amplitude)
Lorenz (1984)—four time units 0.35 0.67
(low amplitude)
Lorenz (1984)—two time units 0.95 0.97
(high amplitude)
Lorenz (1984)—four time units 0.78 0.84
(high amplitude)
Lorenz (1984)—two time units 0.83 0.94
(transitions)
Lorenz (1984)—four time units 0.61 0.83

(transitions)

a random state, modifies its structure (changes the
weights) in such a way as to improve its performance. If
the network architecture is rich enough, this procedure
leads the network to a state where inputs are success-
fully mapped into outputs for all chosen training (in-
put—output) pairs. Essentially, the network describes a
nonlinear model fit of the error. Further information on
neural networks can be found in Tsonis (1992), Roeb-
ber et al. (2003), Marzban (2003), and references
therein.

A generalized feed-forward network with one hidden
layer (and 70 nodes) was used for the error recovery
experiments. Nine inputs were used: the initial analysis,
the observations (including error) at the initial time,
and the lagged forecasts at two, three, and four time
steps validating at the verification time. The cost func-
tion used in the training was the mean square error.

Correlation coefficients between “forecasts” from
the logistic equation and the verification (using the un-
perturbed initial conditions) show that, at two time
steps, substantial predictability exists (r = 0.80; Table
1). Despite this high predictability, the forecasts can be
improved still further (~17% relative to the two itera-
tion forecast, based on the increase in accounted vari-
ance) through the use of the trained neural network.
This exceeds by 8% the predictability obtained with a
linear regression whose inputs are the set of lagged
forecasts with regression coefficients optimized using
the training dataset (not shown). Hence, in this highly
chaotic system, it is still possible to recover a significant
fraction (~48%, based on the amount of accounted
variance relative to the maximum possible improve-
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Fi1G. 2. Lorenz climate model integration for a 40 time unit
period. The value of X is shown. High-amplitude oscillations are
apparent from time = 315-330, followed by low-amplitude oscil-
lations through time = 340, and back again to high.

ment over the two iteration deterministic forecasts) of
the total forecast error using the nonlinear technique.

b. Lorenz (1984) climate model

While the above is an example of a general chaotic
system on which one could test our hypothesis, it has
little relationship to atmospheric phenomena. As such,
it leaves unanswered the question as to whether this
approach can be applied to large-scale atmospheric
flows. For this reason we consider another example,
which represents a low-order general circulation model
(Lorenz 1984, 1990). It is also highly chaotic and is
described by the following equations:

dX/dt = —Y?* — 7Z? —aX + aF,
dYidt = XY — bXZ - Y + G,
dZ/dt = bXY + XZ — Z. (3)

These equations can be derived from the mean and
perturbation quasigeostrophic potential vorticity equa-
tions, using a truncated Fourier series expansion of the
geostrophic streamfunction (Holton 1992). The inde-
pendent variable ¢ represents time, while X, Y, and Z
represent the meridional temperature gradient (or
equivalently from thermal wind balance, the strength of
the zonal flow), and the amplitudes of the cosine and
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FiG. 3. Lorenz climate model integrations for a six time unit
period, starting from an initial state and a second integration from
a slightly perturbed initial state. The value of X, the meridional
temperature gradient from the model, is shown.

sine phases of a chain of superposed large-scale eddies,
respectively. The term F represents the meridional gra-
dient of diabatic heating, and the value to which X
would be driven in the absence of coupling between the
westerly current and the eddies. The term G is the
asymmetric thermal forcing, representing the longitudi-
nal heating contrast between land and sea, and it is the
value to which Y would be driven in the absence of
coupling. The coupling is represented by the terms XY,
XZ, and —Y? — Z?, and results in amplification of the
eddies at the expense of the westerly current.

With F = 8 and G = 1 (representing perpetual winter
conditions; see Lorenz 1984, 1990; Roebber 1995), the
above system exhibits two very distinct flow patterns
(Fig. 2). The first, which consists of low-amplitude fluc-
tuations represents a steady, zonal jet. The second, con-
sisting of high-amplitude fluctuations, corresponds to
alternating strong and weak zonal jets. Another regime
is that of a blocking event, but its frequency of occur-
rence for these parameters is very small and highly
transient. For our analysis, this pattern will not be con-
sidered.

Predictability in this system is strongly dependent on
initial conditions (Fig. 3). In this example, a forecast
starting with a small error in the initial state results in
an error that is quite large by three time units (repre-
senting 120 time steps), the result of a forecast transi-
tion from a high-amplitude to a low-amplitude flow that
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FI1G. 4. Scatterplot of Lorenz model forecasts (four time units
from initial state) and “observed” values of X (meridional tem-
perature gradient) for the two flow patterns.

did not verify. In other instances, of course, pattern
transitions will be correctly forecast and the errors will
be less.

Experiments with the Lorenz model were designed
as follows. The model was run without interruption for
an extended period (1164 time units) and the data re-
corded (base run). The model was then rerun 194 times
out to six time units (6 X 194 = 1194), with the initial
conditions obtained from the corresponding values of
the base run with a small error superimposed (mean
absolute error for the initial conditions of the resulting
194 runs is 0.08 in X, Y, and Z). Of these 194 runs, 98
(96) were high-amplitude (low amplitude) flows.

Table 1 shows that for the low-amplitude pattern at
two time units, predictability is relatively high (r =
0.77), but that it is still possible to recover a substantial
portion of the error using neural networks sorted ac-
cording to the flow (note that the network design is the
same as that used for the logistic equation, except with
seven inputs representing the initial analysis and ob-
served values for X, Y, and Z at lead times of either two
or four units, plus the forecast value for X at the veri-
fication time). In contrast, predictability is much higher
for the high-amplitude pattern and little additional pre-
dictability can be achieved. By four time units, these
differences are accentuated (Fig. 4), with limited cor-
respondence between the forecast and observed states
for the low-amplitude pattern. There is, however, sub-
stantial error recovery using a neural network with the
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FIG. 5. Scatterplot of neural network corrected forecasts (four
time units from initial state) and observed values of X (meridional
temperature gradient) for the two flow patterns. Note the sub-
stantial reduction of variance in low-amplitude cases relative to
Fig. 4.

initial analysis, observations (including error) at the ini-
tial time, and the forecast as inputs (Table 1). Figure 5
is similar to Fig. 4, but shows the corrected forecasts
using the neural network. Comparison between Figs. 4
and 5 clearly shows that the error variance of the high-
amplitude pattern remains approximately the same fol-
lowing nonlinear correction, but that the error variance
of the low-amplitude cases decreases significantly.
Although this is a simple model, similar success in
correcting forecasts with neural networks have been
obtained in realistic forecast settings (e.g., Hall et al.
1999; Roebber et al. 2003; Marzban 2003). This finding
indicates, as suggested in the introduction, that the er-
ror recovery is flow dependent, a result that is consis-
tent with previous research that documents flow-
dependent predictability in the observed atmosphere
(e.g., Nutter et al. 1998). This suggests that it should be
possible to use this differential error recovery to map
the error to the underlying physical characteristics of
the zonal jets. Since the varying flow is dictated by the
physics of the system, this would indicate that error
recovery can be used to understand the physics. Here,
the low-amplitude state in the model occurs for rela-
tively large available potential energy and small kinetic
energy, such that a flow transition also reflects a sub-
stantial transition in the energy budget. Importantly,
this result also holds for pattern transitions [in which
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-the initial flow is a low (high)-amplitude flow that tran-
sitions to a high (low)-amplitude flow by forecast veri-
fication time], such that an additional 9%-12% of the
variance can be accounted for at two—four time units in
these cases compared to those in which a particular
pattern is maintained throughout the forecast interval
(Table 1).

These results suggest that differential error recovery
can be used within an ensemble forecast context to
forecast flow transitions. To test this idea, the Lorenz
model was used to generate ensemble forecasts for a set
of events in which both patterns are verified. The re-
duction of the variance in the model ensemble forecasts
(as opposed to the error, which is unknown in the fore-
cast mode) using the previously trained neural network
(with a median ensemble size of eight members) is used
to classify the forecast as representing either the low- or
high-amplitude pattern (Table 2). The classification is
performed using a simple probabilistic model assuming
that the error recovery is normally distributed (a hy-
pothesis that cannot be rejected at the 1% level of sig-
nificance, based upon the Kolomogorov—Smirnov test
of normality). Standard measurements of diagnostic
skill (probability of detection, false alarm rate, bias, and
true skill statistic) show that this technique is highly
successful in the context of this two-pattern low-order
model. (Note that the verification statistics for the en-
semble mean forecast are considerably lower for this
sample, with a true skill statistic of only 0.32.)

These experiments indicate that the theoretical pos-
sibility of partial error recovery can be realized even in
highly nonlinear systems, and that it may be possible to
apply techniques of this kind to the output of ensemble
systems to better predict and understand atmospheric
flow transitions.

3. Discussion

We have investigated an approach in which a non-
linear method is used to recover the deterministic com-
ponent of the forecast error. Using two low-order non-
linear models we show that not only this is possible, but
that this error recovery reduces the forecast error
enough to allow us to map the remaining error to the
underlying physics and to improve the prediction of
transitions.

Although the method is straightforward, some addi-
tional aspects must be considered before it can be ap-
plied to realistic ensemble forecast systems. First, the
simple ensemble system studied in this preliminary
analysis effectively represents a single point; hence, this
local error correction method must be generalized to
account for the effects of error propagation in real sys-
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TABLE 2. Error recovery and flow pattern diagnosis in the
Lorenz model. The reduction in the standard deviation of the
ensemble forecasts using the neural network for the two patterns
at two time ranges and the contingency table of pattern diagnoses
and associated verification statistics are shown. The probability of
detection (low) = 0.77 and (high) = 0.90. The false alarm rate
(low) = 0.11 and (high) = 0.21. The bias (low) = 0.86 and (high)
= 1.14. The true skill statistic = 0.67.

Reduction in std dev of X (meridional thermal gradient).

Final = high Final = low
amplitude amplitude
Two time unit ensembles 0.0607 0.1089
Four time unit ensembles 0.0675

0.2608

Ensemble pattern diagnosis—Contingency table (No. of cases)

Diagnosed final pattern

Pattern at Low High

final time amplitude amplitude
Low amplitude 73 22
High amplitude 9 83

tems. Work that might establish the suitability of a
more general method is under way, using another
simple (but nonlocal) chaotic model (Lorenz 1995).

Second, this study has been conducted under the con-
straints of the perfect model assumption. As noted in
the introduction, model error imposes an important
limit on forecast accuracy. When this work is extended
to real ensemble systems, the effects of model error on
predictability will also need to be addressed.

Last, in order to represent every part of the multidi-
mensional input space and to protect against memori-
zation, neural networks require large data samples for
training and cross validation. In the context of a hemi-
spheric or global model, where the dimensionality is
necessarily large, it will likely be necessary to take ad-
vantage of atmospheric teleconnections to constrain the
problem. The results of these refinements will be re-
ported in a future paper.
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