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Abstract

In a previous paper (Physica A 312 (2002) 458) we presented an analysis, which established
that DNA sequences exhibit significant nonlinear structure. More specifically, we found that
both coding and non-coding sequences exhibit nonlinearity, but coding sequences are more
nonlinear than non-coding sequences. Here, we extend this result and we propose an approach
which explores nonlinearity to predict genes and intergenic regions in sequenced genomes. Our
results compare favorably to other commonly used approaches in this problem.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With advances such as the complete human genome sequencing, the rat genome
sequencing, and other major sequencing projects, a vast amount of data will be
available to analyze for many decades to come. One of the central challenges for the
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newly sequenced DNA is that of identifying the genes, the proteins they produce,
and the functions these proteins perform. There are several aspects of the gene
identification or prediction problem. The most common practice is to find the exons
and introns and from there (through similarity searches) to predict proteins. In the
last decade or so, several such approaches have been developed to address this aspect
of the gene finding problem. Promising approaches include Glimmer [1,2] (an
interpolated Markov model used for prokaryotic gene finding), Genscan [3] and
Genie [4] (hidden Markov models used for eukaryotic gene finding), and Geneid [5].
Other approaches based on neural networks, decision trees and rule-based systems
have also been suggested [6]. Most of these approaches are based on linear models
(Markov processes are linear in character). Another aspect of the gene finding
problem is to identify the regions in a genome sequence that correspond to individual
genes and to separate them from intergenic regions. The above mentioned
approaches can do this (by considering homologies, start and termination codons,
etc.), but in genomic sequences (such as in the human chromosome 22) where there is
a lot of intergenic DNA they tend to predict more genes than actual (because in
those regions there is a good chance to find open reading frames (ORFs), which are
not part of a true gene). In this paper, we will address both these aspects of the
gene finding problem. More specifically, we will explore nonlinearities in the
structure of DNA sequences to develop a new approach to identify genes and
intergenic regions in genome sequences. Here, for the purpose of our analysis we will
“refer to a “gene” as a unit in a genome sequence made up of a 5 UTR, coding
regions, introns, a 3 UTR, and other regulatory sites (such as promoters, start and
stop codons, and the polyadenylation signal AATAAA), which may be regulated to
code for a protein.

The nonlinear and linear component in DNA sequences was investigated in detail
in Ref. [7). The main idea is as follows: Given a sequence, w(t), we consider an output
1 steps ahead, w(z+1), and its relation to input values lagged at [}, L, ..., [, w(t—1),
w(t—b) ... ,w(t—1,). With one output and » input values we form the vector
Z(t) = (X,Y) = [w(t=1)), ... ,w(t—=1,), w(z+7)] and estimate the mutual information,
I, between the inputs X = [w(t—1,), ... ,w(t—1,)] and the output Y = w(t+1).

X,
Pry(X,¥) dxdy,

IXY) = [ po,l
X, Y) ./Ra” w0 o

where bold characters indicate vectors, x and y are the values that the variables X
and Y take, py,(X,y), px(X), p,(y) are the joint and marginal probability distributions,
and d is the dimension of the space spanned by vectors X and Y. The algorithm for
the estimation of the mutual information for continuous real variables is described in
Refs. [8,9]. Extension of this algorithm to discrete variables such as DNA sequences
is described in Refs. [7,10]. This number, 0</<oo, plays a central role in
information theory. It is usually normalized between zero and one using the
transformation

p=~1-c2.
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The measure p captures both the /inear and nonlinear dependence between X and
Y and it often interpreted as the predictability of Y by X. This measure is based on
the probability distributions underlying the data and it does not depend on the
particular model used to predict Y from X. The reason for choosing the above
transformation is that p reduces to some well-known measure of /inear dependence
when Z = (X,Y) is a d-dimensional Gaussian random vector. In this case, the mutual
information takes the form [§]

1 detX,.detX,,
IX,Y) =3I ——as—",

where X, . and X, are the d x d, n x n and m x m variance-covariance matrices of
Z, X, and Y, respectively. In this case, it can be shown that the mutual information

depends only on the coefficients of linear correlation [7,8]. It follows that the /inear
predictability of Y by X is given by

detX
Y)=4/l -—k—e—.
AX.Y) \/ detZ,, detZ,,

One may think of p as A+ nonlinearity. Thus, if a sequence exhibits nonlinearity,
then p> A. Tsonis et al. [7] found that in both coding and non-coding sequences the
difference p—A is significantly greater than zero. They also found that because the
estimation of nonlinear measures requires more data than the estimation of linear
measures, if the data are limited (and this can happen either for a large number of
inputs and/or for short genes), then p is overestimated in relation to A. This
introduces a bias, ¢. By estimating this bias from surrogate data they found that for
7 = 50 the difference, x, between the average (over the 50 steps ahead) of p—4 (<
p—2Y) and the average bias, (&), is greater for coding regions than for non-coding
regions. It thus appears that nonlinearity may be a property of DNA sequences and
that the degree of nonlinearity may vary between various sequence types in DNA.
The purpose of this paper is to explore this observation and to develop an alternative
method to identify genes and their parts in a genome.

2. Results

To this end, we considered the first 70,000 bp of the human chromosome 12p13.
The structure of this sequence has been experimentally determined [11]. This is a
challenging segment to consider for gene prediction algorithms because the
intergenic regions and the exons are rather short in length [11]. In this segment we
have the following:

bp 1-1523: intergenic region

bp 1524-32821: gene CD4

bp 32822-33808: intergenic region

bp 33809-39430: gene A (this gene has alternate spliced products)

bp 39431-41837: intergenic region
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bp 41838-51856: gene B

bp 51857-52220: intergenic region

bp 52221-59402: gene GNB3

bp 59403-60837: intergenic region

bp 60838-63399: gene C8 (complement)

bp 63400-64137: intergenic region

bp 64138-70000: first 5862 bp of gene ISOT

While developing an approach to identify genes and parts of the genes in a
genome, we have to keep in mind that some kind of a “scanning” procedure will be
involved. If this procedure is computational, the ‘“‘scanning” device could be a
window of a pre-defined length, which considers the information in that window and
then applies a mathematical operation. In this spirit, we considered non-overlapping
intervals of 500 bp (i.e., a total of 140 intervals) and for each one we calculated for
one input (w(t—1)) the average p—A4 over 50 steps ahead. Then for each of the 140
intervals windows we calculated <{p—A)> and (&) and estimated x. The
corresponding 140 values of x can be plotted as a histogram (top of Fig. 1) or as
a function of the 500-bp interval (bottom of Fig. 1). Fig. 1 (top) indicates that the
distribution of x is tri-modal. The three modes are quite distinct and separated by
(approximately) the values 0.04 and 0.11. We will call these values the separatices.
Using gene and exon information for this particular segment from NCBI (second
column, Table 1), we can compare the results in Fig. 1 with the actual beginning and

“end of the genes, and with the location of exons and intergenic regions. We observe
the following:

(1) All values of x greater than approximately 0.11 correspond to exons. For this
particular segment, not even one intron corresponds to a value of x>0.11. This
indicates that the method does not predict wrong exons often. Each such value,
however, may not necessarily represent one exon only. Because in this example the
exons are rather small and close to each other, a given x>0.11 may correspond to
more than one exons. For example, in gene CD4 (between the first two arrows) the
value x =0.15 in the 25th 500-bp interval (in the range of 12,000-12,500 bp)
corresponds to exons 1 and 2. Thus, only the lower bound of the actual exons can be
predicted with this approach.

(2) Values of x between 0.04 and 0.11 correspond to introns and all other gene
parts (UTRs, promoters, start, stop, etc.) which do not code and which may be too
short to be clearly differentiated from introns. We will refer to all these as non-coding
regions. Of course, once these regions are known they can be identified through
consensus sequence, for example, splice sites for introns, conserved elements such as
TATA box in promoters, etc. Comparison between Table 1 and Fig. 1 (bottom)
indicates that only in six cases exons are associated with a value of x<0.11. These
cases correspond to very short exons (typically, smaller than 100 bp) and as such
their signature in a non-coding-dominated 500-bp interval is diminished. They are
indicated by the letter M on the NCBI column in Table 1 and indicate a missing
exon. For this example, and considering that there are 48 actual exons in the
segment, we estimate that at the exon level the sensitivity (I1—[# of missing exons/#
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Fig. 1. (Top) Frequency distribution of the value of x for the segment of human chromosome 12p13. Each
value corresponds to a 500-bp interval. The distribution is clearly tri-modal. The first mode corresponds to
intergenic regions, the second to introns and all other gene parts (UTRs, promoters, start, stop, etc.),
which do not code, and the third to coding regions. We refer to the second category as non-coding regions.
(Bottom) The value of x along the segment. Since the total length of the sequence is 70000 bp there are 140
non-overlapping 500-bp intervals. As is explained in the text the intergenic regions are clearly identified.
Accordingly, the number of genes in the sequence (six) is correctly predicted.

actual exons]) and specificity (1—[# of wrong exons/# of predicted exons]) of an
approach which predicts exons for x>0.11, will be 87.5% and 100%, respectively.

(3) Values of x less than 0.04 correspond to intergenic regions (indicated by the
arrows). The fact that intergenic regions are characterized by very small x values is
not surprising. Intergenic regions include many repeat regions, which makes them
strongly linear. In these cases p~ /1 and the difference between p and 4 is not as
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Table 1
Gene and exon information for the 12p13 segment
NCBI Geneid
CD4 (9) 1531...1650 (F)
12150...12199 12108...12199
12319...12483 12319...12483
26154...26312 26154...26312
26771...27004 26771...27004
28068...28415 28068...28415
29142...29342 29142...29342
30433...30554 30433...30554
30859...30926 30859...30930
31311...31341(M) (M)
“A-1 35761...35775(M) M)
35911...36777(F)
37495...37684 37495...37684
38207...38364 38207...38364
A@ 38664...39215 386064 ...38865
39204...39262
“A-2 35911...36777
37495...37684
38207...38364
38664 ...39215
B (14) 40452...40667(F)
41926...42021 41869...42021
42363...42564 42363...42564
42649 ...42780 (M)
43226...43362 43226...43362
43835...43924 43835...43924
45602...45654 M)
45752...45819 M)
45935...46059 45895...46059
48995...49096(M) 48995...49096
49433...49583 49433...49583
49742...49859 49742...49859
49968...50043 49968...50043
51010...51150 51010...51150
51307...51471 (M)
53596...53643
54980...55086
55184...55247
55373...55535
55642...55708
55787...55988
57596...57812
58802...58908
GNB3 (9) 53298...53354(M) M)
53596...53634(M)
54980...55086(M)
55184...55247
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Table 1 (continued)

NCBI Geneid

55373...55535
55642...55708
55787...55988
57596...57812
58802...58908

C8 (5) 61053...61208 61053...61208
61333...61439 61333...61439
61575...61868 61575...61868
62477...62606 62477...62606
62843...62962 62843...62962
ISOT (7) 64190...64300 64190...64300
67411...67536 67411...67536
67765...67831 67765...67831
68027...68160 68027...68160
68315...68460 68315...68460
68717...68901 68717...68901
69639...69733 69639...69733

The first column indicates the name of gene and the number of its exons in the segment 12p13 of the
human chromosome 12. The second column provides exon information from NCBI. In this column M
indicates that this exon was missed by our approach. The third column shows prediction results from
Geneid. Here M again indicates that this exon was missed by Geneid and F indicates that Geneid falsely
predicted an exon.

significant. Exiting an intergenic sequence and entering a gene is always associated
with a sharp increase in x, whereas exiting a gene and entering an intergenic region is
associated with a decrease in x. Accordingly, all six genes can be identified by this
procedure. Note that because of the formulation of p and A our approach cannot
distinguish a gene from a complement gene. The estimation of mutual information
and of the covariance matrices does not depend on the transformation A—T and
G — C or on the direction we read the information in the window.

In summary, although our approach may only predict the lower bound of the
actual exons, its strength lies in: (1) its ability to predict very accurately the number
of genes in a genome, (2) its ability to indicate that exon(s) exist in a given 500-bp
interval (provided they are not too short), and (3) that it does not tend to predict
wrong exons.

In order to appreciate our results better, we compared our method to other well-
known approaches. Fig. 2 shows prediction results obtained by applying Genscan [3]
and Geneid [5] to this segment. Both these approaches were able to find five genes
(genes B and GNB3 were predicted as one gene). Inside these five genes several exons
are also predicted. Note that both approaches predict more or less the same exons.
The exon predictions from Geneid are shown in the third column of Table 1. As
before the letter M identifies missing exons and the letter F identifies wrongly
predicted exons (false alarms). Based on these results, we estimate that for Geneid




346 A.A. Tsonis, P.A. Tsonis | Physica A 348 (2005) 339-348

CD4 A B -GNB3 ISOT
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Fig. 2. Prediction of genes and exons for the same segment used in Fig. 1, but using Genscan and Geneid.
Both approaches predict five out of six genes.
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Fig. 3. Same as Fig. 2 but for the 51476-bp long sequence HS503F6 from clone CTA-503F6 of human
chromosome 22q11.2-12.1.

and Genscan the sensitivity and specificity at the exon level is 85% and 93%
respectively. It would thus appear that all approaches are quite comparable and
successful. Note that Genscan performs very similar to Geneid. However, as will
show next, our approach not only can be used in conjunction with Genscan or
Geneid to improve predictions, but in certain cases it will be superior.

As we mentioned above one of the strengths of our method lies in its ability to
indicate that exon(s) exist in a given 500-bp interval. Thus, it could be used
to compliment and improve predictions of the actual number of exons obtained by
the popular Genscan or Geneid or other approaches. For example, in the
above analysis and comparison, in 4 out of the 7 Geneid M cases, our approach
indicates that exons exist in the corresponding interval. A correction based on that
would increase Geneid’s sensitivity to 94%. This is approximately a 10%
improvement.

Most important, is the ability of our approach to delineate intergenic regions
clearly. One of the most serious problems with Genscan and similar approaches is
that they tend to over-predict the number of genes in cases where large intergenic
regions are present as, for example, in the human chromosome 22 [12,13]. To
demonstrate this, we considered the 51476-bp long sequence HSS03F6 from clone
CTA-503F6 of chromosome 22q11.2-12.1. Fig. 3 is similar to Fig. 2 but for the
chromosome 22 sequence. We observe that Genscan predicts two rather long genes
(one is a complement gene) and Geneid predicts one gene. According to the
information at NCBI (see also Ref. [14]) this sequence contains one putative gene in
the range of 33,624-34,536bp. More specifically, there is an exon in the range
33,624-33,770 bp, an intron in the range 33,771-34,378 bp, and an exon in the range
34,379-34,536 bp. This is in the region where Genscan predicts the complement gene
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Fig. 4. Same as Fig. | but for the 51476-bp long sequence HS503F6 from clone CTA-503F6 of human
chromosome 22q11.2-12.1. According to this figure one short gene is present, which according to
information from NCBI is correctly identified.

but Genscan predicts a much longer gene (of the order of 10,000 bp). Geneid misses
the suspected gene all together. Fig. 4 is similar to Fig. 1 and shows the results when
the approach discussed above is applied blindly to this sequence. Accordingly, if x is
less than 0.4 the corresponding region is an intergenic region and if it is greater than
0.4 it indicates a gene. Furthermore, an x greater than 0.11 indicates the presence of
exons in the gene. Remarkably, our approach predicts that most of the segment is
intergenic region except for the region where the suspected gene exists. This is an
indication that the separatices may be rather robust. Clearly, our preliminary results
demonstrate that the proposed approach can significantly improve the prediction of
the total number of genes in a genome and that, once a gene is identified, it can
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complement other approaches to further improve the prediction of exons and other
regions in the predicted genes.

3. Conclusions

We have presented an approach, which explores the nonlinear structure of DNA
sequences to identify genes and intergenic regions in sequenced genomes. We find
that our approach is performing as good as other commonly used approaches when
it comes to predicting the number of genes, but it outperforms them when it comes to
identifying intergenic regions. In addition, we find that combining our approach with
other approaches can improve exon prediction. We hope that our results will
promote nonlinear approaches in gene finding projects.
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