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In this review some of the achievements in atmospheric sciences that resulted from chaos theory
and its implications are discussed. They include El Nifio dynamics, physics and spatiotemporal
dynamics of the general circulation, and ensemble forecasting.

1. Introduction

Chaotic dynamical systems possess attractors (limit
sets on which the evolution from an initial con-
dition is confined) that are fractal objects and
whose Haussdorf-Besicovitch (or fractal) dimen-
sion is smaller than the Euclidean dimension of
the system’s state space. A fractal object, unlike
Euclidean objects, possesses no characteristic sizes
or length scales [Mandelbrot, 1983]. It displays de-
tailed structure on all length scales. As a result of
this characteristic, a fractal set has strange prop-
erties such as infinite boundaries enclosing finite
areas. This allows motions in state space which
correspond to trajectories that have infinite length
but are confined on finite areas. Such trajectories
represent nonperiodic evolutions that often resem-
ble pure random processes.

The fractal nature of an attractor does not only
imply nonperiodic orbits, it also causes nearby tra-
jectories to diverge. As with all attractors, trajecto-
ries initiated from different initial conditions soon
reach the attracting set, but two nearby trajecto-
ries do not stay close. They soon diverge and follow
totally different paths on the attractor. This diver-
gence is measured by the positive Lyapunov expo-
nents of the system. Lyapunov exponents give the
rate at which nearby trajectories diverge (positive
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exponents) or converge (negative exponents). For
example, the Lorenz system [Lorenz, 1963| has one
positive Lyapunov exponent equal to 2.16 bits/s.
This is interpreted as follows: if an initial point is
specified with an accuracy of one part per million
(20 bits) its future behavior could not be predicted
after about 9 s [20 bits/(2.16 bits/s)| corresponding
to about 20 orbits.

Since the system is deterministic, if one knows
the initial condition exactly, it is possible to follow
the corresponding trajectory and basically predict
the evolution of the system forever. Thus, deter-
minism exists in chaotic systems. The problem is
that we almost never have perfect knowledge of the
initial condition. There will always be some devi-
ation between the measured and actual initial con-
ditions. They may be very close to each other, but
they will not be the same. Thus, even though we
may know the laws that govern the evolution of the
system exactly, the state of the system at a later
time can be totally different from the one predicted
by the equations thanks to the underlying struc-
ture of the attractor. Initial errors are amplified
and predictability is limited. Furthermore, even if
we know the initial condition perfectly, exact com-
putation for long times requires computing values
with more and more digits, which soon becomes
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practically impossible. Thus, at some point trun-
cation or round-off error takes place, which intro-
duces a small error that will grow and again lead
to unpredjctability. Despite these limitations, the
discovery of such dynamical systems led to the re-
alization that what appears as random looking can
actually be the result of low dimensional determin-
istic dynamics, and that chaos can provide a new
framework to explain and describe complex behav-
ior and to define the limits of predictability of nat-
ural systems. This was so appealing to scientists in
many fields, that chaos theory and nonlinear science
developed rapidly in the last two decades and led
to many important insight about how nature works.
Here we will discuss some of the major advances in
atmospheric sciences.

2. Probing the Dynamics

If the mathematical formulation of a dynamical
system is known, then its state space is known
and investigating the properties of that system is
straightforward. If the mathematical formulation
is unknown or incomplete, then the attractor may
be reconstructed from an observable (time series) of
the system. The reconstruction is achieved by tak-
ing a scalar time series z(t) and its successive time
shifts (delays) as coordinates of a vector time series
given by:

X(t) = {z(?),

where n is the dimension of the vector X(t) (often
referred to as the embedding dimension) and 7 is
an appropriate delay [Packard et al., 1980; Ruelle,
1981; Takens, 1981]. For proper reconstructions the
embedding dimension n should be equal or greater
to 2D + 1, where D is the dimension of the man-
ifold containing the attractor. Such an embedding
preserves the topological properties of the attractor.
More specifically the embedding will be a diffeomor-
phism, a differentiable mapping with differentiable
inverse from the true phase space to the delay space.
This is Whitney’s theorem and, strictly speaking, is
valid only when we have an infinite and dense set
at our disposal. When we only have a limited data
set, the theorem may not be valid. In fact, ir those
cases the word embedding is used loosely as any
topologist will argue.

Since the dimension of the attractor is not
known a priori, the embedding dimension must vary
until we “tune” to a structure (attractor) whose

zt+7),...,z(t+(n-1)71} (1)

characteristics (dimension, for example) become
invariant in higher embedding dimensions (an indi-
cation that extra variables are not needed to explain
the dynamics of the system in question). Once we
have the correct embedding dimension, we can then
proceed with estimating dimensions, Lyapunov
exponents, and perform nonlinear prediction:

e The most common approach to infer the dimen-
sion of an underlying attractor is by estimating
the correlation dimension. According to this ap-
proach [Grassberger & Procaccia, 1983a, 1983b],
given a cloud of points in some embedding dimen-
sion n, one finds the number of pairs N (r, n) with
distances less than a distance r. In this case, if
for significantly small r, we find that:

N(r, n) o ré (2)

then the scaling exponent dy is the correlation
dimension of the attractor for that m. Since
the dimension of the underlying attractor is not
known, we test the power law of Eq. (2) for in-
creasing values of n and check for a saturation
value D5, which will be an estimation of the cor-
relation dimension of the attractor.

e The Lyapunov exponents measure the rate at

which nearby trajectories in phase space diverge
or converge. Positive Lyapunov exponents indi-
cate divergence and therefore chaos. In theory
the Lyapunov exponents \; are defined according

to:
Tlg’%oT/ dt [ é))]

" [pii?i] ®

Here p;(0) is the radius of the principal axis p;
at t = 0 of an initial hypersphere of dimension n
and p;(T) is its radius after a long time 7'. The
dimension n is the dimension of the Euclidean
phase space in which the attractor is embedded.
There are as many Lyapunov exponents as the
dimension of the phase space.

The estimation of the Lyapunov exponents
from a system of ordinary differential equations
is straightforward and it is based on the fact
that the linearized equations which describe the
local dynamics involve a Jacobian whose eigenval-
ues provide all the exponents (see [Tsonis, 1992]).
In practice (i.e. from an observable), at first we
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embed the data in some space whose dimension
is sufficient (normally d. > 2D). Then the re-
constructed phase space provides the information
to estimate the Jacobian by monitoring the mo-
tion in space of selected points and their neigh-
borhoods [Abarbanel & Kennel, 1991].

Because the linearized equations provide the
local dynamics such an approach provides an es-
timation of the local Lyapunov exponents. By
repeating the procedure for many points, we can
obtain an average picture which will be related to
the average Lyapunov exponents of the system.
Chaotic systems obey certain rules. Their lim-
ited predictive power is due to their sensitivity
to initial conditions and to the fact that we can-
not make perfect measurements. However, before
their predictive power is lost (i.e. for short time
scales) their predictability may be quite adequate
and possibly better than the predictive power
of linear statistical forecasting. The philosophy
behind nonlinear forecasting is to explore the dy-

‘namics in order to improve predictions and to
identify nonlinearities in the data.

Since we need to explain the dynamics, we
need to have the reconstructed attractor. Then
we can begin to think how to improve short-term
prediction. If an underlying deterministic mecha-
nism exists, then the order with which the points
appear in the attractor will also be determinis-
tic. Thus, if we somehow are able to extract the
rules that determine where the next point will be
located in phase space we will obtain a very accu-
rate prediction. In general, we can assume that
the underlying dynamics can be written as a map
f of the form

z(t+T) = fr(z(t)),

where in state space z(t) is the current state and
z(t + T) is the state after some time interval
T. However, in reality we cannot easily find the
actual form of function f. A solution to this prob-
lem is an approach called the local linear approx-
imation [Farmer & Sidorowich, 1987]. According
to this approach, the future state is determined
by a linear mapping that applies to the evolution
of a small neighborhood around the current state.
Since the linear mapping may not be the same
at each time step the overall procedure is not
linear. Nonlinear prediction, unlike other meth-
ods for identifying chaos, maximizes the informa-
tion in the available data and thus often works
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well with small data sets [Sugihara & May, 1990;
Elsner & Tsonis, 1992]. Calculation of the cor-
relation dimension, for example, is based on the
estimation of the scaling region which is typically
small, thus exploiting only a small subset of the
available points in the phase space. Nonlinear
prediction uses all the available data, thus requir-
ing smaller samples. For that reason, nonlinear
prediction became a popular alternative to di-
mension estimates and a common tool in nonlin-
ear time series prediction, not only in atmospheric
sciences but in many other disciplines (for more
information on nonlinear prediction see [Tsonis,
1992]).

Note that proper reconstruction has to over-
come several problems with the most important one
being the sample size (number of points on the re-
constructed attractor). The details behind these
estimation procedures and their problems are not
of interest here. They are published in numerous
papers and books (see for example, [Tsonis, 1992;
Tsonis et al., 1994], and references therein). For
this reason we will avoid here a lengthy discus-
sion on these issues. Rather, we will proceed with
reported results and their interpretation.

3. Are there Low Dimensional
Attractors in Weather
and Climate?

The first calculations that were reported were
dimension estimates from observables. These ob-
servables represented dynamics over different time
scales, ranging for very long (thousands of years)
[Nicolis & Nicolis, 1984] to very short (hours)
[Tsonis, 1988]. Virtually every report suggested
a low dimensional attractor of dimension between
3-8. These dimension estimates stirred a lot of
excitement as they suggested that a system as
complex as climate could be described by just a
few equations. After the first excitement, came
(as usual) controversy as almost all of the esti-
mates were contested as wrong. The major problem
seemed to be that in all of these studies the sam-
ple size was simply too small. While this issue has
been debated extensively [Smith, 1988; Nerenberg
& Essex, 1990; Tsonis et al., 1994], it has not been
settled beyond doubts.

In a sense, it is naive to imagine that our
climate (a spatially extended system of infinite
dimensional state space) is described by a grand
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attractor let alone a low dimensional attractor.
If that were the case, then all observables repre-
senting different processes should have the same
dimension, which is not suggested from the myr-
iad of reported dimensions. In [Tsonis & Elsner,
1989], it was suggested that if low dimensional at-
tractors exist they are associated with subsystems
each operating at different space/time scales. In
his study on dimension estimates, Lorenz [1991]
concurs with the suggestion of Tsonis and Elsner
[1989]. These subsystems are usually nonlinear and
may exhibit a variety of stable periodic (equilib-
rium attractors) or chaotic (nonequilibrium attrac-
tors) behaviors. All subsystems are connected with
each other, as in a web, with various degrees of
connectivity. Accordingly, any system can transmit
“information” to another system thus perturbing
its behavior. This “information” plays the role of
an ever present external noise which perturbs the
behavior of the system. Depending on the connec-
tivity of the system to the other systems, the effect
can be dramatic or negligible. Systems with weak
connectivities will be approximately “independent”,
and as such they may exhibit low dimensional chaos
depending on the parameters involved. Nonlinear-
ity and imperfect initial conditions will make these
systems unpredictable after some time. Identifi-
cation of these subsystems thus becomes impor-
tant, since it allows us to treat these systems as
isolated or closed systems. Otherwise, low dimen-
sional chaos will not be favored. Unfortunately, it
is not known a priori that a particular observable
represents a weakly-coupled subsystem, and, thus,
often the procedure and interpretation of the re-
sulting calculation of the attractor dimension is not
valid. Therefore, we should not be surprised if a low
dimensional system exists somewhere in nature.
But we should not expect low dimensional chaos
everywhere (see also [Tsonis, 1996]).

Given the above, the question arises. If subsys-
tems exist in the climate system what are they and
what physics can we infer from them?

4. Possible Subsystems in the
Climate System

The El Nino/southern
oscillation (ENSO)

4.1.

Extended periods of anomalously warm sea surface
temperature occurring aperiodically off the coast
of South America are called El Nino events. This

warming results in a complex interaction with the
atmosphere. Under normal conditions the south-
ern hemisphere trade winds, which flow from east
to west, drive warm surface water westward caus-
ing higher temperatures and even an increase in
sea level in the western Pacific than in the east-
ern Pacific. Warmer water in the western Pacific
leads to higher air temperatures, lower surface pres-
sure, and increased precipitation (due to the in-
crease in convection). If the trade winds diminish
El Nino develops. The warm water normally found
in the western Pacific “sloshes” eastward and grad-
ually makes its way to the coast of equatorial and
South America. Eastward surface flow is enhanced
by changes in atmospheric convection, which shifts
eastward with the warmer water, intensifying west-
erly wind anomalies and strengthening the tendency
of water to flow eastward. These changes are linked
to the atmospheric zonal circulation in this region,
with atmospheric pressure increasing over western
Pacific and dropping over eastern Pacific. This
pattern of reversing surface air pressure at oppo-
site ends of the Pacific Ocean is called the South-
ern Oscillation. Because the ocean warming and
the pressure reversals occur rather simultaneously,
the whole phenomenon is called El Nifio/Southern
Oscillation (ENSO). When an ENSO event dies out,
the tendency is for the trade winds to return to
normal. If, however, they become too strong, then

4.0
t
3.0
2.0 ¢
1.0 |

0.0 | H

-1.0 - |

Southern Oscillation Index

-2.0

30 -

!

t
1880

i 1940 1960 1980

Year

1900 1920 2000

Fig. 1. Time series of the normalized monthly mean sea-
level pressure difference between Tahiti and Darwin. The
record reveals aperiodic fluctuations in the atmospheric
Walker circulation over the tropical Pacific Ocean and is
typically referred to as the Southern Oscillation Index (SOI).
The record runs from January 1882 to January 1995 for a
total of 1357 values.



the cold water pool normally found in the eastern
Pacific stretches more westward than normal and
warm water and rainy weather is confined mainly
in the western tropical Pacific. This opposite to El
Nino extreme is called La Nina.

Since the above described changes occur over a
very large area of the planet, they ultimately affect
through air—sea interaction the weather in many far
away places. For example, it is claimed that El
Ninos are associated with rainy conditions in the
southeastern United States and mild dry conditions
in the northeastern United States. Even though
one cannot “decouple” ENSO from the rest of the
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Fig. 2. Correlation coefficient between actual and predicted
values as a function of months into the future using a non-
linear prediction algorithm. Solid lines with squares is the
function of the original SOI and the dashed line with trian-
gles the mean function of fifty surrogates. The one-standard
deviation above that mean is shown by the dotted line. Ac-
cording to the way the surrogates are generated (see [Elsner
& Tsonis, 1993]) the null hypothesis is that SOI is a nonlinear
transformation of a linear Gaussian process (in this case the
surrogates have the same mean, variance and autocorrelation
structure). According to these results, the null hypothesis is
rejected on the average at about 90% confidence level.
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planet it is tempting, if not logical, to assume that
ENSO is a distinct subsystem of the climate sys-
tem operating over time scales between 1-7 years
(ENSO occurs aperiodically with an average period
of about 4-5 years).

4.1.1. Nonlinearity in ENSO

The nonlinear character of ENSO has been em-
pirically investigated extensively using the South-
ern Oscillation Index (SOI) (Fig. 1). The results
(for an example, see Fig. 2), even though based
on limited data, consistently indicated that ENSO
is a low dimensional chaotic system with a dimen-
sion somewhere around six [Hense, 1987; Tsonis &
Elsner, 1992; Bauer & Brown, 1992; Elsner &
Tsonis, 1993] and with an average predictability
limit of about three months [Tsonis & Elsner,
1997]. This low dimensional chaos is consistent with
theoretical studies involving simple ENSO models
[Tziperman et al., 1994; Vallis, 1986], and with
more sophisticated models [Neelin & Latif, 1998|
which have indicated that interaction between the
annual cycle and the inherent frequency of ENSO
leads to frequency-locking and chaos. The transi-
tion to chaos takes place primarily along the quasi-
periodicity route, which is common in periodically
forced nonlinear systems. In general, two parame-
ters are responsible for this scenario. One parame-
ter affects the inherent frequency of the ENSO os-
cillation relative to the annual cycle, and the other
one affects the strength of nonlinearity. As nonlin-
earity increases, the tendency of the ENSO cycle to
lock its frequency on rational fractions of the annual
frequency also increases. When the system jumps
between the various subharmonic resonances, chaos
can ensue (see Fig. 3).

4.1.2. ENSO and global temperature

Apart from the annual cycle, it would appear that
ENSO is closely related to the global temperature
signal. Two such studies have shed light into this
very important issue. In the first study [Tsonis &
Elsner, 1997], the nonlinear structure of SOI was
probed by estimating the local Lyapunov exponents
Ai. The local Lyapunov exponents relate to the di-
vergence of nearby trajectories at a specific location
in the attractor and can provide (by adding all the
positive exponents) a measure of the predictability
of the system along its trajectory in state space (or
in other words predictability as a function of time).
By embedding the SOI data in a six-dimensional
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Fig. 3. Dependence of chaotic or frequency-locked behavior on model parameters for an El Nifio model from which weather
noise has been excluded. The vertical axis is a coupling parameter, which affects the amplitude of the simulated El Nifo
through the strength of atmospheric wind anomalies. The horizontal axis is a surface-layer parameter, inversely related to the
strength of momentum mixing between the surface layer and the layer below. The surface-layer parameter affects the length of
the simulated cycle, since stronger currents tend to change surface temperature faster. The plot represents the result of about
3000 500-year simulations, with each simulation classified as chaotic (gray) or frequency locked (color). In the frequency-locked
case, color represents the frequency ratio of the El Nifio oscillation to that of the annual cycle. For example, 0.33 is one El Nifio
every three years, while 0.30 is three El Nifios every ten years. Ratios of integers occur only for frequency-locked solutions.
By contrast, the chaotic solutions occur between the strongly frequency-locked regions, where the solution tends to lock first
on one interval and then on the other. (Figure courtesy of Prof. David Neelin.)

space, it was found that for SOI there exist two
positive exponents (indicating expansion along two
directions) one zero exponent (corresponding to the
slowly changing magnitude of the principal axis tan-
gent to the flow) and three negative (indicating con-
traction along the remaining directions). The sum
of the positive Lyapunov exponents is an estimate
of the metric (Kolmogorov) entropy, K, and is re-
lated to the geometry of the underlying dynamics.
The inverse of K is a measure of the predictability
of the system. It was found that for the two posi-
tive Lyapunov exponents, (\;) = 0.273 (months™!)
and (\;) = 0.130 (months~!), where ( ) indicates
the average over all locations in the reconstructed
attractor. The fact that the two average values are
comparable suggests that chaotic dynamics in SOI
arise from the interference of two mechanisms of
instability of comparable importance. Along the

trajectory, the sum A; + Az ranges from a mini-
mum of about 0.3 to a maximum of about 0.5 with
(M + X2) = 0.403 (months™!). These values put
the limits of predictability ((A; + A2)~!) of the un-
derlying dynamics in SOI (not necessarily of ENSO
whose predictability limits are higher) between 2
and 3.3 months. Figure 4 shows A\; + g (or K) as a
function of time. The above results were shown to
be statistically significant at a 90% confidence level.

A careful examination of Fig. 4 reveals strik-
ing similarities with global temperature records as
it exhibits an overall positive trend with the follow-
ing features: a decrease up to about 1905, a steady
increase up to about 1940, a subsequent decrease up
to about 1970 and a rise afterwards. Such features
can be identified in almost all global temperature
records as, for example, in the global marine air
temperature record [Newell et al., 1989] (Fig. 5).
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Fig. 5. The annual global marine air temperature record.
Comparison with Fig. 4 reveals striking similarities between
the two signals. Both series have an overall slight positive
trend and segments of similar tendencies.

These two records correlate highly but this could
be due to the presence of the overall slight positive
trends. If, however, it is found that the detrended
series are coherent over a band of frequencies, then
it is more likely that the two time series are re-
lated. Coherence [Priestley, 1981] is a measure of
the linear correlation between two time series over
a given frequency band when the phase difference
is set to zero. Statistically significant coherence
over a frequency band indicates linear relationship
between the corresponding oscillatory components.
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In addition, phase estimates can provide temporal
(lead/lag) relationships between the two variables.
Thus, coherence estimates and phase relationships
can provide useful insights about physical relation-
ships.

Figure 6(a) shows the multiple-window
[Thomson, 1982; Kuo et al, 1990] magnitude-
squared coherence of the detrended time series
transformed by tan h~!. As a compromise between
statistical reliability and resolution, a bandwidth
of 0.16 cycles/year is adapted, which results in 16
Slepian sequences (0.16 x T') where T' = 105 is the
length of the series in years. On such a scale, co-
herence estimates are roughly Gaussian with unit
standard deviation [Thompson, 1982]. As a conse-
quence, the statistical significance of the coherence
between the two series can be made directly. The
80% and 90% confidence levels of this distribution
are shown as the two horizontal lines. Remarkably,
the two signals have a coherence much above the
90% confidence level at frequencies less than 0.25
cycles/year (i.e. for time scales greater than about
four years). Thus, the residuals of the two series
are coherent with high confidence over the above
low frequency band. At higher frequencies appar-
ently other unknown factors inhibit high coherence.
Phase estimates [Fig. 6(b)] show no positive or
negative trend suggesting no lead/lag relationships
between the two signals. We can thus conclude
that warmer temperatures correspond to higher K
values or to lower predictability. Therefore, there
is significant evidence that global temperature and
Kolmogorov entropy, K, are linearly related at all
frequencies lower than 0.25 cycles/year. Thus, as
the temperature of the planet increases predictabil-
ity (1/K) of the ENSO decreases.

Dynamically speaking we may view global tem-
perature as a controlling factor (input) whose
changes modify the dynamics and thus the char-
acter of the system, a view consistent with the
theory of connected dynamical subsystems dis-
cussed earlier.

In the second study nonlinear properties in a
global temperature record were examined by prob-
ing the fractal properties of the random walk gen-
erated by that record. According to random walk
analysis, a time series z(t) is mapped onto a walk
by calculating the net displacement, y(t), defined
by the running sum,

y(t) = =(i). (4)

i=1
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Fig. 6. (a) Magnitude-squared coherence between the signals in Figs. 4 and 5 transformed by tan h=!. On this scale the
values are Gaussian with unit standard deviation. The 80% and 90% confidence levels of this distribution are shown by the
parallel broken lines. The bars show one standard deviation of the transformed coherence values as determined by jack-knifing
over windows [Kuo et al., 1990] for selected frequencies. (b) Phase of coherence between the two signals. The absence of any
significant trends indicate no lead/lag relationships. The graphs are not extended to higher frequencies because the coherence

remains almost zero everywhere.

A suitable statistical quantity used to characterize
the walk is the root mean square fluctuation about
the average displacement,

F(t) = [([Ay@)]*) = ([Ay@D12 (5)

where Ay(t) = y(to +t) — y(to), and ( ) indi-
cates an average over all positions, %o, in the walk.
When F(t) « tH, it is possible to distinguish
three types of behavior: (1) uncorrelated time series
with H = 0.5, as expected from the central limit
theorem, (2) time series exhibiting positive long-
range correlations with H > 0.5, and (3) time se-
ries exhibiting negative long-range correlations with
H < 0.5. Markov processes with local correlations
extending up to some scale also give H = 0.5 for
sufficiently large t. It is well known [Feder, 1988]
that the correlation function C(t) of future incre-
ments, y(t), with past increments, y(—t), is given by
C(t) = 2(22H-1 —1). For H = 0.5 we have C(t) =0
as expected, but for H # 0.5 we have C(t) # 0 in-
dependent of t. This indicates infinitely long cor-
relations and leads to a scale-invariance (scaling)
associated with positive long-range correlations for
H > 0.5 (i.e. an increasing trend in the past im-
plies an increasing trend in the future) and with
negative long-range correlations for H < 0.5 (i.e.

an increasing trend in the past implies a decreasing
trend in the future). Note however, that positive
long-range correlations do not imply persistence as
usually used in climatology, which is defined as the
continuance of a specific pattern. Scale invariance is
a law that incorporates variability and transitions
at all scales in the range over which it holds and
is often a result of nonlinear dynamics. Note that
long-term trends in z(t) should be removed as they
may correspond to processes at time scales longer
than the length of the data. In these cases, the in-
clusion of a long-term trend will make the results
trivial.

The actual definition of scaling demands that
scaling extends to infinity (space or time). While
this is possible in a mathematical sense, it is im-
practical in physical experiments. Physical systems,
like the climate system, have finite size, and are
characterized by processes that operate at different
space/time scales [Tsonis, 1998]. If these processes
are scale invariant, the associated scaling must be
limited. In such a framework, certain processes may
be characterized by an H greater than 0.5 and thus
they may promote a trend. This tendency can take
the system away from its equilibrium state. Thus, it
is reasonable to assume that if the system remains
near equilibrium, processes must be operating at




Impact of Nonlinear Dynamics 889

0.5
2.0

A N | AR TR
0.0 L Nt‘ WIS L)

0.0 M | ] | A e A ‘*‘:; i’ i “““‘

-1.0

Departures from normal (deg C)
Detrended normalized departures (C)

I

-1.5 : : - : -4.0 - : - -
1860 1880 1900 1920 1940 1960 1980 2000 1860 1880 1900 1920 1940 1960 1980 2000
Time

Time
(a) (b)

20

Net displacement, y(t)

-80 : :
1860 1880 1900 1920 1940 1960 1980 2000
Time

(c)

Fig. 7. (a) The International Panel for Climate Change (IPCC) monthly global temperature anomaly record [Folland et al,
1999]. (b) The detrended monthly global temperature anomaly record, x(t). The trend is removed using singular spectrum
analysis (SSA) [Elsner & Tsonis, 1996]. SSA, which is fully nonparametric, considers M lagged copies of a centered time series
Z(t) sampled at equal intervals, 7, Z; = Z(to +i7), ¢ =1, N, and estimates the eigenvalues, \x and eigenvectors, u, of their
covariance matrix C (here 1 < k < M). The eigenvectors are called empirical orthogonal functions (EOFs) and the coefficients,
ax, involved in the expansion of each lagged copy, principal components (PCs). As a result of the orthogonality requirement,
each principal component can be isolated and probed independently of the remainder of the time series. Accordingly, the time
series can be reconstructed to include any subset of the principal components. The removal of one or more of the components
is therefore a form of filtering. Usually, the first PCs correspond to ultra-low oscillations or trends. Thus, reconstructing the
record by successively removing the leading PCs may result in a nonparametric trend removal. The number of leading PCs
that should be removed in order to remain with a record of zero slope is decided by employing the nonparametric test of
Kendall and Stuart [1977]. For the temperature data N = 1572, and it was assumed that M = 350. It was found that the
first three PCs need to be removed before the reconstructed record from the remaining PCs has a trend that is statistically

insignificantly different than zero (at a significance level of 0.01). (c) The net displacement, y(t), of the random walk based
on the data in 7(b).

other time scales in order to avoid a runaway effect.  vide useful insights about the system, which may
Under this scenario we should be able to discover  enhance its predictability. The mapping of a time
characteristic space or time scales associated with  series to a random walk and the subsequent analysis
these mechanisms. Such characteristic scales pro-  provide an elegant way to search for characteristic
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Fig. 8. The log-log plot of F(t) versus ¢ of the displacement
shown in Fig. 7(c). The circles correspond to the tempera-
ture data and the squares to a surrogate Markov process of
the same length and lag-one autocorrelation. The tempera-
ture data exhibit double scaling whereas the stochastic data
exhibit one scaling region as expected from theory.

time scales in data, as demonstrated next for global
temperatures.

Figure 7(a) shows the actual global monthly
temperature anomaly record [Follard et al., 1990]‘,
and Fig. 7(b) the detrended anomaly record, z(t).
Figure 7(c) shows the net displacement, y(t), as a
function of time. Figure 8 (circles) is a log-log plot
of F(t) versus t for 1 <log ¢t < 2.4 (1 month <t <
20 years). As t approaches the sample size, the es-
timation of F(t) involves fewer and fewer points.
Thus, extending this type of analysis to longer time
scales is not recommended.

The log F(t) function appears to exhibit two
distinct linear regions separated by a small transi-
tion region: one in the interval 0 < log ¢t < 1.25
(1 <t < 18 months) and another in the interval
1.35 < log t < 1.95 (22 months < ¢t < 7.4 years).
The linear fits over these two regions result in slopes
H; = 0.65 and Hy = 0.4. The correlation coefficient
of the linear regression is in both cases greater than
0.99. The null hypothesis Hy: H; = 0.5 against
the alternatives H,: H; > 0.5 and the null hy-
pothesis Hy: Hy = 0.5 against the alternative, H,:
Hy; < 0.5 are both rejected at a significance level
of 0.01. In order to show that the above result is
not an artifact of the sample size, a Markov process
with the same length and lag one autocorrelation
as the temperature data was considered and the
analysis was repeated. Now (squares in Fig. 8) the
double scaling disappears, and the expected slope

of 0.5 is recovered. The two linear regions in the
log(F') function for the temperature data intersect
at about log ¢ = 1.3 which corresponds to ¢t ~ 20
months. Thus, this analysis indicates that the data
in Fig. 7(a) are consistent with a power law with
H, = 0.65 for t < 20 months and with a power
law with Hy = 0.4 for t > 20 months. Alterna-
tively stated, processes of time scales less than 20
months sustain a tendency toward an initial trend
(whether positive or negative) and processes of time
scales greater than 20 months tend to reverse the
past trend. This change in scaling defines an im-
portant characteristic time scale in global climate
[Tsonis et al., 1998].

The spectra of global temperature data contain
significant power at frequencies corresponding to
the ENSO cycle (time scales 4-7 years). This re-
sult is usually (and correctly) interpreted to imply
that ENSO affects global temperatures. While 4-7
years covers most of the scaling range correspond-
ing to negative correlations, the interpretation of
the result is complex. As a response to, e.g. a rise
in 7' El Nifio is made more likely. El Nifio causes
a further increase in T for the next 18 months, or
as long as the western Pacific energy source has not
been exhausted. Subsequently global temperatures
cool off. Repetition of an El Nifio at, say, four years,
contributes to an oscillatory wave form of the global
T record with a period of four years, contributing
strongly to P(f) at 1/4/yr. Beyond this, however,
increases in T' which persist for longer times trigger
more frequent El Nifios throughout the period.

An important point in understanding a random
walk analysis of the global temperatures involves
some basic aspects of El Nino physics. The west-
ern equatorial and off-equatorial Pacific, in contrast
to the east, act as a large thermal reservoir [Neelin
et al., 1998]; in this region of the Pacific, SST’s are
not in equilibrium with the wind stress, as they are
in the eastern equatorial Pacific [Schneider et al.,
1995]. An El Nino event depletes this storage of
heat, largely by spreading the heat over a much
broader region of the sea surface, while simulta-
neously reducing the typical vertical thickness of
the warm upper layer. As El Nifio matures, the
depth to the thermocline diminishes while latent
heat is transferred to the atmosphere. After typ-
ically about 16 months, when the heat energy is
depleted, the El Nino begins to collapse. Thus, any
event, which triggers an El Nino tends to raise at-
mospheric temperatures for up to 16-18 months.
Subsequently, however, the heat storage in the




western Pacific is reduced, and it takes generally on
the order of two years to replenish, meaning that at-
mospheric temperatures are then typically reduced.
In this light, the above result that atmospheric tem-
perature fluctuations tend to be accentuated over
time scales of up to 18 months, while they tend to
be self-correcting on time scales of 2-7 years, has
only one possible interpretation. For short periods
of time, increases in atmospheric temperatures trig-
ger El Nifios. The development of an El Nino fur-
ther increases atmospheric temperatures. After El
Nifio has run its course, the reduction in stored heat
in the equatorial and off-equatorial Pacific leads
to a reduction in atmospheric temperatures, and
the heat reservoir in the tropical oceans is utilized
by the ocean—atmosphere system for self-correction.
An analogous argument holds for La Nina.
Further, it is noted that ENSO related data
[Trenberth, 1997], show a clear change in the El
Nifio/La Nifia cycle in the middle 1970’s. In the in-
terval 1950-1975 (with cooling) La Nifia events last
longer than El Nifio events, and are more common
than El Nifio. Exactly the opposite is the case in the
interval 1975-present (and in the early 20th Cen-
tury) when global temperatures increased. Thus, a
hypothesis consistent with these data and the above
results would be that El Nifio is activated to reverse
positive trends, and La Nina to reverse negative
trends. Additional support for this hypothesis is
provided by a recent case study suggesting El Nino
as a mechanism for the tropics to shed excess heat
(UCAR Quarterly, 1997, [Sun & Trenberth, 1998]).
According to this study, the continuous pouring of
heat into the tropics cannot be sufficiently removed
by weather systems and ocean currents. By con-
sidering global oceanic and atmospheric heat bud-
gets during the 1986-1987 El Nifio, it is suggested
that El Nifio serves as a release valve for the trop-
ical heat. The above results indicate a role for the
ENSO cycle in balancing global temperature.
Although the underlying physical aspects of
ENSO are understood well, the irregularity of the
cycle is still a subject of intense research. The
theory of nonlinear dynamical systems has offered
useful insights in this area and toward a better
understanding and prediction of one of the most
important features of our climate system.

4.2. The Pacific decadal
oscillation (PDO)

The PDO refers to a pattern of two modes of sea
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surface temperature (SST) in the Northern Pacific
Ocean, one in the northwestern part of the basin,
and a smaller one in the eastern tropical part of
the basin. One of these modes represents warmer
water and the other colder water. It has been sug-
gested that this dipole reverses (warm <— cold)
about every 20-years, and that this reversal has
significant effects on the weather over North Amer-
ica. Like in ENSO, it is quite possible that large
SST anomalies could through air-sea interaction
affect the atmosphere. However, due to lack of long
SST anomaly records in the Pacific Ocean, there
is simply not enough data to delineate with high
confidence a suspected cycle of 20 years. As such,
even though the PDO is a good candidate for a sub-
system very little is certain at this point about its
dynamics.

4.3. The north Atlantic
oscillation (NAO)

It appears that another oscillation exists over the
Atlantic Ocean. This oscillation which is also re-
ferred to as the Arctic Oscillation (AO) represents
another dipole which alternates between low pres-
sures over polar regions and higher pressures at
lower latitudes (warm phase) and the reverse (cold
phase). A weaker polar high means cold winter
air masses do not penetrate as south as the United
States. At the same time, cold air masses are more
frequent over Newfoundland and Greenland. The
higher pressure at lower latitudes results in stronger
westerly flow bringing warm air to Northern
Europe. It would appear that the NAO switches
phase aperiodically on a time scale of decades. As
the PDO, NAO is also a topic that is lately receiving
a lot of attention and intense research.

With limitations in the available records, many
doubts remain about the validity and the statistical
significance of PDO and NAO. Nevertheless, the im-
portance in large-scale shifts over the oceans cannot
be ignored. If those oscillations are real features of
our climate system, then understanding the inter-
action between them and the atmosphere may of-
fer dramatic improvements in predicting long-term
changes in the atmospheric circulation and hence
in regional climate. The next few decades will
undoubtedly produce exciting insights into this
problem as more data are collected and increasingly
sophisticated climate models are developed and
investigated.
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5. Insights into the Dynamics
and Physics of the Atmosphere

5.1. Spatiotemporal patterns
in ‘the extratropical
atmospheric circulation

The atmospheric general circulation often enters
into regimes that cause weather anomalies (depar-
ture from an average state) to persist over areas
of the globe. The variability of these atmospheric
circulation anomalies has been investigated using
the random walk method described earlier. The
results suggest important links between processes
over time scales from weeks to decades. The data

used are daily 500 hPa values at grid points provid-
ing full coverage of the Northern Hemisphere (from
20°N). A 500 hPa value indicates the height of the
500 mb pressure level and it is proportional to the
mean temperature of the layer from the surface to
the 500 mb level. An example of such a variable
for a particular grid point is given in Fig. 9(a).
Uninterrupted daily 500 hPa values are available for
this point from 1964 to 1988 (total of 9132 values).
Figure 9(b) is the net displacement of the random
walk generated by the time series in Fig. 9(a), and
Fig. 9(c) is the log F'(t) versus log t plot.

A linear relationship with a slope H = 0.625 is
very suggestive here. It was shown [Tsonis et al.,
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Fig. 9. (a) The 500 hPa weekly anomaly for grid point 29.7°N, 86.3°W. (b) The net displacement of the random walk.

(c) The log-log plot of F(t) versus t. A linear relationship with a slope of 0.625 emerges. This value indicates positive

long-range correlations.
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Fig. 10. The spatial distribution of the estimated value of H in the Northern Hemisphere. Warmer (colder) colors indicate
higher (lower) values of H. The contour interval is 0.05. Contour labels are plotted with the decimal point removed for clarity.
As is explained in the text this result is consistent with large-scale dynamics.

1999] that this scaling is statistically significant
at the 98% confidence level. Thus, the results in
Fig. 9(c) are strongly suggestive that the anomaly
record in Fig. 9(a) exhibits scale invariance in time
and positive long-range correlations such that if
now a certain type of anomaly (negative or pos-
itive) exists it will most likely continue to exist
in the future for any ¢t < 512 weeks. Otherwise
stated, this result would indicate that the dynami-
cal properties of the scaling process at small scales
are related to those at large scales via a relationship
that involves a magnification factor M where ) is

the ratio of the large time scale to the small time
scale.

The generality of this law was then tested by
repeating the analysis for all available grid points.
The results are shown in Fig. 10 in which the
spatial distribution of the exponent H is plotted.
Almost everywhere the value of H exceeds 0.5 with
a hemispheric mean value of 0.65. Only a small area
centered over Finland and the northern reaches of
the former Soviet Union appears to exhibit values
close to or lower than 0.5 (the lowest value is 0.48).
The fact that virtually everywhere the value of H is
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greater than 0.5 is a direct consequence of natural
processes exhibiting some degree of redness in their
spectra (i.e. larger scales possess more energy than
smaller scales). We observe a very coherent pattern
that is characterized by a general tendency for H
to decrease with increasing latitude. This result is
consistent with the increasingly baroclinic nature of
atmospheric dynamics as one progresses from the
subtropics through the midlatitudes (more baro-
clinicity, more power to small scales, less “redness”
in the spectra, smaller exponent H). Variations
from this general tendency over the North Pacific
and the North Atlantic Oceans are associated with
the storm tracks where the influence of very short
time scale cyclones and anticyclones is enhanced,
resulting in local decreases in H. The consistency
of these results with large-scale dynamics and their
statistical significance indicate that Fig. 10 would
not arise by chance and provide very strong evi-
dence of the universality of long-range correlations
in the extratropical circulation.

Tsonis et al. [1999] were able to trace this scale
invariance to decade-long patterns that are estab-
lished as a result of the intrinsic variability of the
climate system. Their results go further than ex-
plaining simple persistence as they indicate that the
underlying dynamics and transitions in the atmo-
spheric circulation are associated with a fractal law
that dictates that no characteristic timescale exists
and that all scales from a week to a decade are con-
nected. A consequence of this law is that the mem-
ory of the large scales (low frequency processes) is
not independent of the memory of the small scales
(high frequency processes). Further, the decrease
in H with latitude and the association of low val-
ues of H with the Pacific and Atlantic storm tracks
shown in Fig. 10, suggest the fundamental role of
these high frequency midlatitude weather systems.
This would indicate that the memory of the extra-
tropical climate system does not reside only in the
oceans (i.e. long time scales) with the atmosphere
simply responding passively.

The physics behind the emergence of this
scaling are not difficult to produce (Fig. 11).
High frequency atmospheric disturbances are cru-
cial agents in achieving the long-term balance of
energy, momentum and water vapor in the atmo-
sphere. These systems may also play a funda-
mental aggregate role in modulating the low fre-
quency (seasonal to decadal) atmospheric flow by
communicating the effects of anomalous surface
properties (boundary forcing) to the slowly varying
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Fig. 11. This diagram presents a scenario according to
which long-range correlations in the atmospheric circulation
emerge from the interplay of processes operating at time
scales ranging from a week to ten years.

components of the climate system. This communi-
cation is directly tied to the location of the storm
track [Trenberth & Hurrell, 1994]. The position of
the storm track largely determines the seasonal dis-
tribution of temperature and precipitation, which
leads to energetic exchanges of heat and momentum
with the underlying surface. It has long been rec-
ognized that extratropical sea surface temperatures
(SSTs) modulate midlatitude atmospheric variabil-
ity [Latif & Barnett, 1996; Namias, 1969; Wallace &
Jiang, 1987; Lau & Nath, 1990]. Evidence exists to
suggest that the atmospheric flow leads the oceanic
changes by one to several months [Davis, 1976;
Lanzante, 1984; Wallace et al., 1990]; these results
indicate that the driving of the ocean by the at-
mospheric circulation initiates the changes but that
once induced, the strong persistence of oceanic SST
features feeds back onto the low frequency atmo-
spheric dynamics. The mechanism for this feed-
back involves oceanic gyre modes (decadal time
scale) generated by large-scale atmosphere-ocean
interactions in midlatitudes [Latif & Barnett, 1996,
1994; Latif et al., 1996]. Given an anomalous sub-
tropical ocean gyre, adjustments in the oceanic
poleward transport of heat will result, leading to
midlatitude SST anomalies. These anomalies force
an atmospheric response in the form of adjustments
in the atmospheric general circulation and associ-
ated storm tracks. The aggregate effect of the lat-
ter is to modulate both surface heating (reinforc-
ing the existing anomaly) and the wind stress curl




(opposing the sense of the existing oceanic gyre),
ultimately readjusting the poleward heat transport
and the associated sign of the SST anomalies.
5.2. Channels of communication
between tropics and
higher latitudes

One of the paramount issues in atmospheric sci-
ences is the equatorial to extratropical teleconnec-
tions and the interaction between the tropics and
higher latitudes. Observational studies [Wallace &
Gutzler, 1981; Horel & Wallace, 1981] have estab-
lished the existence of teleconnections between re-
gions in the tropics and regions in higher latitudes.
These teleconnections are attributed to several at-
mospheric phenomena such as El Nifo/Southern
Oscillation (ENSO) [Horel & Wallace, 1981], the
40-50 day oscillation [Madden & Julian, 1971, Lau
& Chan, 1985], convective activity in the trop-
ics, etc. Theoretical/modeling studies [Hoskins &
Karoly, 1981] have suggested and/or speculated on
the mechanisms according to which teleconnections
might be established. In general, it is proposed that
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they are established via equatorial Rossby waves
(which travel westward) or Kelvin waves (which
travel eastward) that are “allowed” to leak north-
ward to higher latitudes. It has been suggested
[Wiin-Nielsen & Chen, 1993] that communication
between tropics and midlatitudes may be happen-
ing through exporting of kinetic energy from low
to higher latitudes. What, however, was not set-
tled was the exact location and number of the cor-
ridors through which the communication between
the tropics and midlatitudes is established.

By applying ideas from information theory and
nonlinear prediction, Tsonis and Elsner [1996] were
able to empirically obtain an answer to this ques-
tion. According to Wales [1991], the information
loss per unit time in a time series is related to
the initial decay of Pearson’s correlation coefficient,
r(t), between predicted and actual values, provided
that the prediction is a dynamic prediction that ex-
plores the geometry of the underlying state space
(nonlinear prediction). This relationship is given
by

r(t) =1 — Ce?K? (6)

30W

CONTOUR FROM 48. TO 92. BY 4.

Fig. 12. Spatial distribution of predictability as measured by the quantity 7(x100) (an average correlation between actual
and predicted 500 hPa geopotential height values) defined in the text. Correlations range from about 0.5 (violet) to about
0.9 (red). Results have been smoothed using a nine-point uniform filter. Spatial heterogeneity of seasonal to interannual

predictability is clearly evident.
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The north-south gradient of Fig. 12. According to Eq. (7), this map shows regions where the loss of information per

distance is fast (i.e. information is not transported easily) [yellow-red] and regions where the loss of information per distance
is slow or slightly negative (i.e. information from lower latitudes is transported easier to midlatitudes) [light blue to purple].
Two corridors along which information is transported easily, one over the Pacific Ocean and one over the Atlantic Ocean are

evident.

where K is the Kalmogorov entropy, which is
related to the information content, I, according to
I = —K(K > 0). Tsonis and Elsner [1996] showed
that the average predictability, 7, over some time
interval related to the mean loss of information, I,
over that time interval, and that the north-south
gradient of 7 is proportional to the north-south
gradient of [ .

dr dl

ax < dx’ ()
where A is the latitude. Accordingly, small val-
ues of d7F/d\ would correspond to small values of
dI /d), which will indicate that the rate of informa-
tion loss per distance is slow. Regions with slow
information loss per distance would then repre-
sent regions where information flows easier, thereby
defining channels along which the communication
between north and south is more effective. By
considering monthly 500 hPa values in 1080 grid
points in the Northern Hemisphere in the period
from 1946 to 1989, and performing nonlinear pre-
diction [Farmer & Sidorowich, 1987; Sugihara &
May, 1990; Wales, 1991] the spatial distribution

of T (estimated over a year) was produced. The
results are shown in Fig. 12. The high predictabil-
ity areas over land areas can be explained by the
strong dependence of low tropospheric tempera-
tures to changes in solar insolation (annual cycle)
which in turn cause drastic changes in atmospheric
circulation patterns. The expected low predictabil-
ity over oceanic regions seems to have been ac-
centuated in Northern Atlantic Ocean where the
predictability is much poorer compared to similar
regions over Northern Pacific Ocean that normally
receive equal amounts of solar insolation. This
feature may be attributable to the Gulf Stream
and/or to the North Atlantic deep water [Broecker
& Denton, 1990]. Both these “signals” give off
great amounts of heat in the North Atlantic Ocean
thereby making winters over those areas milder.
This reduces the amplitude of the seasonal cycle
whose predictability drops. Similar comments can
be made about the predictability over the subtrop-
ical western Pacific Ocean where the values are
much lower than those over the subtropical eastern
Pacific. This feature is attributable to the seasonal



to inter-annual footprint of the chaotic (and thus
unpredictable) ENSO signal.

Figure 13 shows the north-south gradient of 7.
Yellow corresponds to dr/dA = 0.34 which, given
the range of 7 in Fig. 12, represents a value signif-
icantly greater than zero. As we go from yellow to
red, d7/d)\ decreases, approaching zero for light blue
and becoming slightly negative for darker blue and
purple. From the above discussion and arguments
two corridors along which information flows easily
(channels of communication) can be identified. One
in the Pacific Ocean (centered around 160°W) and
a wider one in the Atlantic Ocean (centered around
25°W).

The delineation of these channels of communi-
cation provides new insights to our knowledge about
large-scale dynamics in the atmosphere. First,
their existence verifies model results that have sug-
gested or speculated the existence of such regions,
but not the exact location and number [Hoskins &
Karoly, 1981]. The existence of the corridors may
explain teleconnections since their location deter-
mines where information leaks into higher latitudes.
For example, according to Fig. 13, El Nifio related
fluctuations trigger Rossby waves that emanate to
higher latitudes at about 160°W longitude. The
subsequent interaction between those fluctuations
(or the triggered waves) and the general circula-
tion will result in changes of a certain horizontal
scale. Since the immediate land areas are those
of the United States and Canada those areas are
most likely to be affected. We can thus estab-
lish teleconnections between El Nifo and changes
to weather patterns in North America. These re-
sults may also explain the observed by the general
circulation models phase-locked response at higher
latitudes in the northern Pacific Ocean and Amer-
ica. This phase-locking refers to similar responses
irrespective of the place of origin and the nature of
the fluctuations in the tropics. It is suggested that
because the corridor is rather narrow, the fluctu-
ations trigger waves that emanate into higher lat-
itudes more or less from the same region. Thus
they transport information at the same location re-
gardless of the source. It is interesting to mention
here that recent results on mass exchanges between
northern and southern hemispheres take place along
these corridor [Carrera & Gyakum, personal com-
munication]. A similar equation to Eq. (7) may
be derived for the longitudinal (east-west) gradient
of 7. This gradient, however, is very weak (vary-
ing from —0.015 to 0.015) indicating the direct and
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easy communication due to the prevailing zonal cir-
culation. This result indicates that the information
gradient has a much greater (more than an order
of magnitude) meridional component than a zonal
component and thus it is mostly restricted to the
meridional direction.

These results depend on retaining the annual
cycle in the data. If the annual cycle is removed,
the resulted Fig. 12 makes no sense whatsoever as
it loses all its structure and climatology and simply
shows noise. Since the annual cycle is more pro-
nounced (and thus more predictable) in the mid-
latitudes than in the tropics, according to Eq. (7)
information has to flow from tropics to higher lat-
itudes. This “direction” seems to be solely due to
the annual cycle. Thus, firstly, these results suggest
a greater role for the annual cycle in large-scale dy-
namics that it is traditionally practiced. Secondly,
since the delineation of Figs. 12 and 13 is a direct
result of how the spatial distribution of the pre-
dictability of the annual cycle signal is modified by
basically the El Nifio and the North Atlantic sig-
nals, these results may be suggesting that, to a large
degree, global-scale dynamics over the time scales
resolved by the available data arise from the in-
terplay of three major signals (or subsystems) an-
nual cycle, El Nifio, and the North Atlantic signal.
The Pacific Decadal Oscillation is not involved here
possibly because of its long time scale.

6. Ensemble Prediction

Chaos has provided a framework to understand and
explain fundamental properties of natural systems.
One of these fundamental properties is the limited
predictability of nonlinear systems caused by the
divergence of nearby trajectories in the attractor (or
by the presence of positive Lyapunov exponents).
Provided that a system has this property, explor-
ing the local structure of the attractor can actually
lead to improved predictions. Nonlinear prediction
approaches (such as the one discussed earlier) do
that and as a result they outperform any other sta-
tistical method [Elsner & Tsonis, 1992]. One of
the key results in the theory of nonlinear dynamical
systems is that divergence of nearby trajectories is
not the same everywhere. In other words, the pos-
itive Lyapunov exponent(s) along a trajectory vary
(recall Fig. 4). Accordingly, predictability along
a trajectory varies. This has led to possibly the
most important application of chaos in atmospheric
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Fig. 14. The individual six-, four-, and two-day forecasts of the 5640 m contour of the 500 hPa height field from an ensemble
are shown in the three right panels (from top to bottom). The ensemble consists of 23 forecasts that differ only in that their
initial conditions are slightly perturbed in order to represent our uncertain knowledge of the state of the atmosphere. Initial
time is 0000 UTC (Coordinated Universal Time) September 13, 2000. The red and blue lines represent the perturbed forecasts
whereas the green and yellow lines mark the AVN and MRF control forecasts. Note the large variations in the location and
intensity of the trough in the area around the Great Lakes at the longer, six-day lead time. While the control forecasts are
relatively poor in this area, there are a number of ensemble forecasts that capture well the true evolution of the atmosphere
(white line). The forecast uncertainty is much reduced in the four-, and especially in the two-day forecast. (Figure courtesy
of Dr. Zoltan Toth.)
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Fig. 15. Each subpanel of the eight-panel figure in the upper left shows the forecast probability of more than half inch of
precipitation over a 24-hour period around 0000 UTC September 13, 2000, with lead times, as indicated, from eight to one day.
These probabilities are derived from the same ensemble of 23 forecasts in Fig. 14. The high probabilities observed around the
Great Lakes area for the longer (six-day or longer) lead times may not be very reliable due to the great uncertainty in location
and intensity of the low pressure trough in Fig. 14 over that area and at those lead times. (Figure courtesy of Dr. Zoltan

Toth.)
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sciences: the ensemble forecasting. The idea be-
hind ensemble forecasting is simple. Make a con-
trol forecast starting from some initial state of the
climate system (coupled ocean-land-atmosphere
system). This results in predicted fields of several
variables such as upper level flow (for example, 500
hPa height field), precipitation, temperature, etc.
Then, perturb the initial state by a small amount
and repeat the forecast. Do this several times to
produce an ensemble forecast. If the ensemble mem-
bers exhibit large spread it means that the system
is in an area in the attractor where divergence of
nearby trajectories is great. In this case, the fore-
casts are less reliable than if the spread is small.

While technical details are of no importance
here, it should be mentioned that the way the initial
state is perturbed is critical. The National Cen-
ters for Environmental Prediction (NCEP) in the
United States use the so-called breeding method
[Toth & Kalnay, 1993, 1995] according to which
the initial ensemble perturbations are those that
grew faster during the analysis cycle leading to the
initial time. The European Centre for Medium-
Range Weather Forecasts (ECMWF') uses the sin-
gular vector approach [Molteni et al., 1996; Buizza
& Palmer, 1995], in which the fastest-growing per-
turbations are determined for a two-day period at
the beginning of the forecast. Figures 14 and 15
show examples of results produced by NCEP. In
Fig. 14, the yellow and green lines represent con-
trol forecasts of the 5640 m contour of the 500 hPa
height field. These control forecasts correspond to
two initial states of the climate system, one at 0000
UTC (called MRF) and one twelve hours before
(called AVN). The red lines are perturbed MRF
forecasts and the blue lines are perturbed AVN fore-
casts. From bottom to top, the figure shows the
two-day, four-day, and six-day lead time forecast
of the 5640 m contour. The white line shows the
true evolution of the atmosphere. Such diagrams
are called “spaggetti” diagrams and help us decide
how reliable a forecast is. As we can see in Fig. 14,
the individual members of the ensemble exhibit very
small spread in the two-day forecast. This spread
increases for later times. For the six-day forecast,
only a few ensemble members capture the evolution
of the true atmosphere well.

In the area of the Great Lakes, large varia-
tions in location (east—west position) and intensity
(north-south position) of the low pressure trough
are observed in the six-day forecast. Figure 15
shows the corresponding probability of precipita-

tion forecast. For areas around the Great Lakes,
a high probability is predicted. This is consistent
with the results in Fig. 14 where a low pressure
trough is predicted to linger over these areas. How-
ever, given the uncertainty in the location and in-
tensity of this trough, the six-day, seven-day, and
eight-day precipitation forecast may not be reliable.
For up to four days, however, the forecasts appear
to be reliable.

We should mention that ensemble forecasting
assumes that the model used for prediction is an ac-
curate representation of the climate system. While
this may not be correct (in fact different centers
use different models), ensemble forecasting has be-
come an indispensable tool in weather forecasting.
With future improvements in the models and in the
methods, ensemble forecasting promises to be one
of the most useful operational tools ever developed
in meteorology.

7. Summary

As the story goes, while chaos was discovered by
a meteorologist (Edward Lorenz), the atmospheric
science community ignored it completely. The sem-
inal work of Lorenz [1963] was published in the
Journal of Atmospheric Science, a very respectable
journal published by the American Meteorological
Society. It would appear that the revolutionary re-
sults of Lorenz were so far removed from the inter-
ests and focus of atmospheric scientists at that time
that the paper was basically “buried”. It took al-
most two decades for the paper to be discovered (by
physicists who were eagerly looking for dynamical
systems having the properties of the Lorenz system)
and for the theory of chaos to emerge and develop
to what many scientists consider the third revolu-
tion in science after the theories of relativity and
quantum mechanics. After writing this review, I
was happy to realize that we (atmospheric scien-
tists) have, finally, redeemed ourselves.
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