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ABSTRACT

The atmospheric general circulation often enters into regimes that cause weather anomalies (departures from
an average state) to persist over areas of the globe. By considering 500-hPa measurements the authors demonstrate
the existence of scale invariance in the variability of extratropical atmospheric circulation anomalies over the
whole range of timescales resolved by the available data, from a week to a decade. This scale invariance indicates
an absence of characteristic timescales and the presence of positive long-range correlations, meaning that if an
anomaly of a particular sign exists in the past it will most likely continue to exist in the future. Moreover, this
scale invariance indicates that the dynamics of small scales are connected to the dynamics of large scales via
a simple power law. A consequence of this finding is that the memory of the system is not confined only to
large scales but extends to small scales as well. By investigating the hemispheric structure of 500-hPa fields
over the last 34 yr the authors are able to link this scale invariance to anomaly patterns that exhibit strong
spatial coherence and a decadal variability. These findings are related to climate processes considered in the
recent literature and discuss the implications of such a property of the general circulation for modeling and
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prediction of the climate system response.

1. Theoretical background

One of the most challenging problems in atmospheric
dynamics is to understand the nature and limits of cli-
mate variability. It appears that the climate is intrinsi-
cally variable at all time and space scales. However,
except from a general understanding that climate vari-
ability is nonlinear in origin, a clear formulation of its
nature remains elusive. Here, we provide unique insights
about climate variability by employing data relating to
the general atmospheric circulation and time series anal-
ysis using “‘random walk’ methods (Hurst et al. 1965;
Tsonis and Elsner 1995; Viswanathan et al. 1996). Given
a time series x(¢f) we can define a random walk on a
plane by stepping in a random direction with a step of
size equal to the corresponding value of x. As such the
net displacement, y(#), after ¢ time steps is defined by
the running sum y(r) = %!_, x(i). For any walk a suitable
statistical quantity that characterizes the walk is the root-
mean-square fluctuation F(#) about the average displace-
ment, F2(1) = [Ay(1)]> — [Ay(1)]?, where y(¢) = y(t, +
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t) — y(t,) and the bars indicate an average over all
positions 7, in the walk.

A scaling (fractal) process y(f) satisfies the relation-
ship y(r) = 4o~ 'y(Af) where = ¢ indicates equality in
distribution and o, A > 0. This relationship indicates
that the statistical properties at timescale ¢ are related
to the statistical properties at timescale Az. Consequent-
ly, any moment of order k, w,, satisfies the relation
p(t) = o~ 'u(Ar). It is easy to show that the power
law (1) = AZ" with H = log o/log \ is a solution to
the last equation (Triantafyllou et al. 1994). Considering
the definition of F(f), we expect that if y(r) is scaling,
then F(z) o« t%. If y(¢) is not scaling, then the relation
between F(f) and ¢ is unknown and not a power law. A
value of H = 0.5 results from uncorrelated time series
and corresponds to a purely random walk (Brownian
motion). In this case, x(f) is a white noise. Note that
Markov processes exhibiting local correlations extend-
ing up to some characteristic scale also give H = 0.5
for large ¢. It is well known (Feder 1988) that the cor-
relation function C(f) of future increments, y(r), with
past increments, y(—1), is given by C(r) = 2(2*~ ! —
1). For H = 0.5, we have that C(f) = 0 as expected,
but for H # 0.5 we have that C(7) # 0 independent of
t. This indicates infinitely long correlations and leads
to persistence or a scale invariance associated with pos-
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itive long-range correlations for H > 0.5 (i.e., an in-
creasing trend in the past implies an increasing trend in
the future) and to antipersistence or a scale invariance
associated with negative long-range correlations for H
< 0.5 (i.e., an increasing trend in the past implies a
decreasing trend in the future). Note, however, that pos-
itive long-range correlations do not imply simple per-
sistence (which is defined as the continuance of a spe-
cific pattern and which provides no information about
the intrinsic variability of the system in question). Scale
invariance is a law that incorporates variability and tran-
sitions at all scales and is often a result of nonlinear
dynamics. Note also that even though scaling associated
with positive long-range correlations imply persistence,
the reverse may not be true. Random walks with H #
0.5 are called fractional Brownian motions (fBms). In
theory the exponent H is related to the spectra of the
y(¢) function via a relation of the form S(f) o« f-@#+D,
where f is the frequency. As such, higher values of H
do not imply longer persistence but rather that the power
of the smaller (shorter) scales is not as large. As H
increases, the large-scale features of y(z) remain the
same but the variability at shorter scales decreases. We
may think of the y(7) functions corresponding to higher
H values as “‘smoothed” versions of the y(¢) functions
corresponding to lower H values. In addition, the pres-
ence of long-range correlation dictates that the spectra
of the original time series x(f) obeys a relationship of
the form P(f) o« f2#*'. As such H > 0.5 is associated
with redness in the spectra of x(z) and as H — 1 the
redness increases (less power in smaller scales). Note,
however, that positive long-range correlations do not
just imply red spectra. As we mentioned above, scaling
is a law that describes the exact relationship between
the scales involved, not just the simple fact that larger
scales have more power than smaller scales. Further-
more, while redness is one of the characteristics of pos-
itive long-range correlations the opposite is not true.
Red spectra do not necessarily imply positive long-range
correlations. Note, that even though in theory both P(f)
and F(¢) contain information about the exponent H, F(¢)
is superior in estimating H. Because the definition of
F(1) involves averages over all positions ¢, of the walk,
F(r) is a smoother function than P(f). Also, P(f) fluc-
tuates significantly and as a result scaling regions are
often masked. Because of that the estimation of slopes
in logP(f) versus logf plots is not straightforward (see
Viswanathan et al. 1996).

2. Results

Because of the above properties of scaling random
walks, it is important to investigate the extent to which
long-range correlations exist in the atmosphere and if
they exist, their implications with respect to our climate
system. In order to address these questions we consid-
ered data relating to the general atmospheric circulation.
At first, we considered a location for which uninter-
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rupted long upper-air data exist, obtained from the Na-
tional Centers for Environmental Prediction (NCEP, for-
merly the National Meteorological Center) compact disc
dataset (Mass et al. 1987). The point has coordinates /
= 22,J = 8(29.7°N, 86.3°W) and represents a location
in the southeastern United States (along the Florida gulf
coast) adjacent to two rawinsonde stations (Appalach-
icola and Valparaiso/Eglin). Daily 500-hPa values are
available with no interruptions for this point from 1964
to 1988 (total of 9132 values). From this record we first
calculated daily 500-hPa anomalies by subtracting each
value from the climatological mean for that day (defined
as the average of the 25 available daily values). Then
we produced weekly averages of these anomalies. Fig-
ure la shows the anomaly record x(¢) for this grid point.
Figure 1b shows the random walk in 2D that corre-
sponds to this record. This walk is generated by stepping
from some initial position in a random direction with a
step size equal to the absolute value of the anomaly.
Figure lc shows the net displacement as a function of
time. Figure 1d is a log—log plot of F(t) versus ¢ for 1
= t = 512 weeks. As t approaches the sample size the
estimation of F(z) involves fewer and fewer points.
Thus, extending this type of analysis to longer time-
scales is not recommended. As the linear least squares
fit indicates, a strong case can be made that the
logF(logt) function is linear with a slope of 0.625. The
null hypotheses H,: H = 0 and H,: H = 0.5 against
the alternative H,: H = 0.625 are rejected at a confi-
dence level of 99.99%. Repeating the analysis by shuf-
fling the x(#) record and producing a Markov process
exhibiting similar lag-one autocorrelation as the original
x(t) results in slopes equal to 0.5 as expected from ran-
dom records. Most of the seasonality in the 500-hPa
data is removed by constructing the anomaly record. As
a test of the effect of any residual seasonality on our
results, we differenced the anomaly record (which elim-
inates the remaining first-order seasonality) and repeated
the analysis. Our results were unchanged. Note that dif-
ferencing the record will not remove all the effect of
higher-order moments (such as variance). However,
since y(#) is the running sum of x(f), the magnitude of
the fluctuations about a mean of zero is not as important
as underlying low-frequency trends that result in a ten-
dency for more positive rather than more negative fluc-
tuations and vice versa.

While the above result proves that x(z) is not white
noise nor a Markov process it may not necessarily con-
stitute a proof of positive long-range correlations and
scaling with H = 0.625. Since power law exponents are
given by the slope of a corresponding log—log plot, the
above-described procedure has become the common
practice in studies exploring fractal dimensions or other
scaling exponents, like H. Generally, a significant slope
in a log-log plot has been considered adequate to claim
fractality, nonlinearity, etc. However, the resolution and
length of the time series introduce artifacts at small and
large scales, respectively (Tsonis and Elsner 1995; Tson-
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FiG. 1. (a) The 500-hPa weekly anomaly for grid point 29.7°N, 86.3°W. (b) The random walk generated from the anomaly record. Each
step is in a random direction with a size equal to the anomaly absolute value. (¢) The net displacement of the random walk in (b). (d) The
log—log plot of F(t) vs t. A linear relationship with a slope of 0.625 emerges. This value indicates positive long-range correlations. Since
in (c) there are no identifiable jumps this result would correspond to an fBm rather than to a Lévy flight.

is and Elsner 1990). As such the scaling region (if it
exists) is somewhere in between small and large scales
but exactly where is not always clear. Unfortunately, in
log-log plots many functions appear linear and the ex-
ponents estimated from these slopes may be false and
not necessarily represent actual scaling. For example,
Fig. 2a shows a hypothetical logF () versus logt plot.

A linear least squares fit in the range 0 = logt = 2.7
results in a slope of 0.7. Standard statistical tests show
that the slope is significantly different from a slope of
0.0 and a slope of 0.5 at a confidence level of 99.99%.
Does this indicate scaling associated with long-range
correlations? As is shown in Fig. 2b a good argument
can be made that the logF(r) versus logt function is
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FI1G. 2. A hypothetical logF () vs logt function. Linear regression
(a) provides a good fit to the data, but a nonlinear function (b) is a
better fit. Because of that a statistically significant slope in (a) may
not be associated with true scaling.

nonlinear and therefore F(¢) # . Thus, a rigorous de-
termination that a process is scaling requires one to show
that it is consistent with the family of processes that we
know a priori exhibit similar scaling properties. As such,
a proper test for scaling should be a goodness-of-fit type
test.

Such a test for scaling over a given range of scales
has been developed by Tsonis and Elsner (1995). For a
scaling process and given an infinite sample size it fol-
lows that H = A logF(¢)/A logt is the same at all time-
scales. However, due to limitations in the data, large
fluctuations in the value of H may be observed locally
(i.e., at different timescales) even in real scaling pro-
cesses. In such cases, confidence intervals on the esti-
mated H must be derived as a function of the timescale.
This is achieved by using surrogate data generated by
inverting power spectra of the form f ?#*). Even
though other approaches to generate fBms exist, this
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FiG. 3. For any random walk one expects the root-mean-square
fluctuation F(r) about the average displacement to scale with r ac-
cording to a power law F(f) = ¢”. The exponent H is the slope of a
logF (1) vs logt plot. If scaling exists in a logF(¢) vs logr plot, then
it follows that in a A logF(1)/A logt vs logt plot a plateau should be
observed at a level equal to the corresponding exponent H provided
that an infinite sample size is available. When a limited sample size
is available this may not be the case. Then in order to decide whether
or not the process under investigation is scaling, we have to show
that the data are consistent with a family of pure fBms with an
exponent equal to the one being claimed. The dots indicate the value
of H as a function of logt from the data in Fig. 1d. The shaded area
shows the 99th and first percentiles of the distribution of H as a
function of logt obtained from the family of pure fBms having the
same exponent, resolution, and length as the data in Fig. 1d. These
bounds can be used to test for scaling in our data.

approach is considered the purest interpretation of frac-
tional Brownian motion. The formula used to generate
surrogate y(¢) functions for = 1, N is given by y(t) =

N2 [Ck(2mIN)' <] cos(2mik/N + ¢,), where C is
a constant, N is the sample size, ¢, are N/2 random
phases distributed in [0, 277], and a = 2H + 1 (Osborne
and Provenzale 1989; Tsonis 1992). A large number of
computer-generated fractional Brownian motions with
the desired exponent, resolution, and length are ob-
tained. For each simulation and for a given logt we
estimate a “‘local’” H. Thus, from all simulations we can
obtain the frequency distribution of H as a function of
logt. Once we have this information, bounds indicating
the 99th and first percentiles of these distributions can
be produced, which can then be used to test the null
hypothesis H,: scaling with an exponent H against the
alternative H,: no scaling with an exponent H. If the A
logF(r)/A logt function from the data under testing falls
within these bounds, then the hypothesis cannot be re-
jected. Since no points are allowed to exist outside the
bounds the test is very stringent. Figure 3 shows the
results from 1000 simulated fBms with H = 0.625. The
shaded area indicates the first and 99th percentiles of
the frequency distribution of H as a function of logz.
The black dots are the A logF(¢)/A logt values from Fig.
1d. All points fall within the shaded area, indicating that
the scaling reported in Fig. 1d with H = 0.625 is sta-
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FiG. 4. The spatial distribution of the estimated value of H in the Northern Hemisphere. Warmer
(colder) colors indicate higher (lower) values of H. The contour interval is 0.05. Contour labels
are plotted with the decimal point removed for clarity. As is explained in the text this result is
consistent with large-scale dynamics.

tistically significant at a confidence level of 98% over
the whole range of scales 1 < r < 512 weeks. Note that
the width of the bounds is a function of the sample size
and it increases for large scales due to poorer statistics
at those scales (the inflection at small scales is due to
the fact that at those scales we approach the resolution
of the data; see Tsonis and Elsner 1995). As such, at
large scales the data points may be consistent with fam-
ilies of fractional Brownian motion (fBms) that exhibit
an exponent H that is significantly different from 0.625.
However, since fractional Brownian motion requires that
the scaling extends over the whole range of scales (i.e.,
all points are inside the bounds), we find by producing
the bounds for varying H’s (i.e., by testing the null
hypothesis H: scaling with an exponent H against the
alternative H,: no scaling with an exponent H, for sev-
eral H’s in the neighborhood of 0.625), that only families
with an H between approximately *0.015 of the esti-
mated 0.625 will contain all points. This procedure in-
dicates that the estimated value of H = 0.625 is robust.

The results in Fig. 3 are strongly suggestive that the
anomaly record in Fig. la exhibits scale invariance in
time and positive long-range correlations such that if
now a certain type of anomaly (negative or positive)
exists it will most likely continue to exist in the future
for any t+ < 512 weeks. Otherwise stated, this result
would indicate that the dynamical properties of the scal-
ing process at small scales are related to those at large
scales via a relationship that involves a magnification
factor A¥, where A is the ratio of the large timescale to
the small timescale.

Having established the above we then tested the gen-
erality of this scaling law. In order to address this ques-
tion we repeated the analysis for grid points providing
full spatial coverage in the Northern Hemisphere (from
about 20°N) as obtained from the NCEP compact disc
dataset. For each grid point we estimated H and tested
for significance. Figure 4 shows the spatial distribution
of the estimated value of H. Almost everywhere the
value of H exceeds 0.5 (indicating long-range correla-
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tions), with a hemispheric mean value of 0.65. Only a
small area centered over Finland and the northern reach-
es of the former Soviet Union appears to exhibit values
close to or lower than 0.5 (the lowest value is 0.48).
The fact that virtually everywhere the value of H is
greater than 0.5 is a direct consequence of natural pro-
cesses exhibiting some degree of redness in their spectra
(i.e., larger scales possess more energy than smaller
scales). We observe a very coherent pattern that is char-
acterized by a general tendency for H to decrease with
increasing latitude. This result is consistent with the
increasingly baroclinic nature of the dynamics as one
progresses from the subtropics through the midlatitudes
(more baroclinicity, more power to small scales, less
“redness” in the spectra, smaller exponent H). Varia-
tions from this general tendency over the North Pacific
and the North Atlantic Oceans are associated with the
storm tracks where the influence of very short timescale
cyclones and anticyclones is enhanced, resulting in local
decreases in H. The consistency of these results with
large-scale dynamics indicate that Fig. 4 would not arise
by chance. Indeed, following the procedure outlined
above for the point in the southeastern United Sates, we
find that for 80% of the points the estimated value of
H is statistically significant. Note that this result should
not be interpreted as indicating a high probability of
false negatives. The 20% of the points not classified as
scaling may include points that are correctly classified
as not scaling. Given the severity of the test and the
overall coherent and consistent structure of Fig. 4 these
results provide very strong evidence of the significance
and universality of long-range correlations in the extra-
tropical circulation.

This is an important result that raises questions about
the implications and the physics responsible for the or-
igin of this law. In order to address these issues we have
examined the spatial distribution of the anomaly pattern
over many years. Beginning with the year 1959 and a
window of length 5 yr, we produced the corresponding
5-yr mean anomaly Northern Hemispheric map for the
period 1959-63. Subsequently, we slid the window by
1 yr and repeated the analysis up to the last available
5-yr period (1989-93). The random walk analysis is
sensitive to missing data and as such it requires unin-
terrupted data. However, producing 5-yr mean anomaly
patterns is not as sensitive, since minor gaps do not alter
the large-scale picture. As such we were able to extend
the analysis beyond the period 1964-88 to years where
short gaps do exist. By comparing these maps we were
able to deduce that in the available 34-yr period the
spatial 5-yr moving average anomaly distribution is
characterized by a small wavenumber pattern that
evolves in space and time and exhibits an apparent de-
cadal-scale cycle. A major characteristic of this pattern
is that its evolution is very slow. As such, a given dis-
tribution tends on the average to persist for many years
before a transition takes place. Figure 5 demonstrates
the above. From Figs. 5a and 5b we see that a seeming
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wavenumber-2 pattern persists during the 10-yr period
of 1959-68, whereas Figs. Sc and 5d show that a dom-
inant wavenumber-1 pattern persists during the 10-yr
period of 1979-88. The transition from wavenumber 2
to wavenumber 1 can be traced to the period 1974-78,
a transition that has previously been identified and stud-
ied as a substantial decade-long change in the North
Pacific (Miller et al. 1994; Graham 1994; Trenberth and
Hurrell 1994). It appears that a termination of this pat-
tern occurred in the period 1989-93 and a different
pattern has now been established (Miller et al. 1994).
Note that due to the evolution of the anomaly patterns
(that may include slow propagation, shifting, etc.),
small-scale (local) differences between Figs. 5a and 5b
or between Figs. Sc and 5d may be observed. However,
the global pattern remains quite robust. We performed
two spatial correlation analyses [one for the whole area
and one for the Pacific-North American (PNA) sector]
between Figs. 5a and 5b and between Figs. 5¢ and 5d.
We find correlations of the order of 0.5 in all cases.
This indicates two things: 1) both cases are equally per-
sistent, and 2) since anomaly correlations of 0.5-0.6
between synoptic maps provide useful information
(Hollingsworth et al. 1980), the leverage provided by
similar correlations at timescales of many years is ob-
vious. Thus, these figures provide useful information.
It is this robustness that results in the emergence of long-
range correlations with the local differences represent-
ing the intrinsic variability in the y(¢) function.

Due to substantial gaps in the datasets we are not able
to extend this analysis further into the past. However,
given the fact that previous to this pattern another and
different persistent pattern was in place, it would appear
that decade-long patterns may be established as a result
of the intrinsic variability of the complete climate sys-
tem at those scales and that their persistence may be a
result of scale invariance associated with long-range
correlations. Our results, however, go further than ex-
plaining simple persistence as they indicate that the un-
derlying dynamics and transitions in the atmospheric
circulation are associated with a fractal law that dictates
that no characteristic timescale exists and that all scales
from a week to a decade are connected. A consequence
of this law is that the memory of the large scales (low-
frequency processes) is not independent of the memory
of the small scales (high-frequency processes). Further,
the decrease in H with latitude and the association of
low values of H with the Pacific and Atlantic storm
tracks shown in Fig. 4 suggest the fundamental role of
these high-frequency midlatitude weather systems. This
would indicate that the memory of the extratropical cli-
mate system does not reside only in the oceans (i.e.,
long timescales) with the atmosphere simply responding
passively.

3. Concluding discussion: A possible scenario for
the emergence of scaling

Recent climate research together with earlier concep-
tual ideas (Frankignoul 1985) offer a possible scenario
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FIG. 5. (a) A 5-yr mean anomaly map for the period 1 Jan 1959-31 Dec 1963. (b) Same as Fig. 2a but for the period 1 Jan 1964-31
Dec 1968. (c) Same as Fig. 2a but for the period 1 Jan 1979-31 Dec 1983. (d) Same as Fig. 2a but for the period 1 Jan 1984-31 Dec
1988. Red indicates positive and blue indicates negative anomalies. This figure indicates that a certain anomaly field might persist for
at least 10 yr. Our results suggest that persistence of anomaly patterns may be a result of scale invariance associated with long-range
correlations.

of how this scaling may arise. It is well known that
high-frequency atmospheric disturbances are crucial
agents in achieving the long-term balance of energy,
momentum, and water vapor in the atmosphere. It now
appears that these systems may also play a fundamental
aggregate role in modulating the low-frequency (sea-

sonal to decadal) atmospheric flow by communicating
the effects of anomalous surface properties (boundary
forcing) to the slowly varying components of the climate
system. This communication is directly tied to the lo-
cation of the storm track (Trenberth and Hurrell 1994).
The position of the storm track largely determines the
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seasonal distribution of temperature and precipitation,
which leads to energetic exchanges of heat and mo-
mentum with the underlying surface. It has long been
recognized that extratropical sea surface temperatures
(SSTs) modulate midlatitude atmospheric variability
(Latif and Barnett 1996; Namias 1969; Wallace and
Jiang 1987; Lau and Nath 1990). Evidence exists to
suggest that the atmospheric flow leads the oceanic
. changes by one to several months (Davis 1976; Lanzante
1984; Wallace et al. 1990); these results indicate that
the driving of the ocean by the atmospheric circulation
initiates the changes but that once induced, the strong
persistence of oceanic SST features feeds back onto the
low-frequency atmospheric dynamics. The mechanism
for this feedback involves oceanic gyre modes (decadal
timescale) generated by large-scale atmosphere—ocean
interactions in midlatitudes (Latif and Barnett 1996; La-
tif and Barnett 1994; Latif et al. 1996). Given an anom-
alous subtropical ocean gyre, adjustments in the oceanic
poleward transport of heat will result, leading to mid-
latitude SST anomalies. These anomalies force an at-
mospheric response in the form of adjustments in the
atmospheric general circulation (e.g., PNA) and asso-
ciated storm tracks. The aggregate effect of the latter is
to modulate both surface heating (reinforcing the ex-
isting anomaly) and the wind stress curl (opposing the
sense of the existing oceanic gyre), ultimately read-
justing the poleward heat transport and the associated
sign of the SST anomalies.

Our results have both practical and theoretical im-
plications. From the practical point of view, since anom-
aly regimes may persist for timescales of at least up to
a decade, persistence forecasts are reliable for long time-
scales once a regime has been established. This 10-yr
timescale is consistent with recent results (Huang et al.
1996) on the use of persistent climate normals in fore-
casting. They suggest that such normals in order to be
effective should be based on averages over periods less
than 30 yr (if longer datasets were available, our method
could define the exact averaging period from a break in
the scaling). From the theoretical point of view, our
results offer important insights into how we view ex-
tratropical air—sea interactions. It is customary to con-
sider the high-frequency atmospheric processes as noise
that randomly forces the coupled system. Since noise
has no memory our results suggest that such a view is
inappropriate. Rather, the complete interaction across
all scales will be required in order to study the estab-
lishment and transition of general circulation patterns.
An understanding of these scale interactions will in turn
extend predictive ability beyond simple persistence and
enhance our ability to estimate the response of the ex-
tratropical climate system.
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