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Is DNA a Language?
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DNA sequences usually involve local construction rules that affect different scales. As such their
“dictionary” may not follow Zipf’s law (a power law) which is followed in every natural language.

Indeed, analysis of many DNA sequences suggests t

hat no linguistics connections to DNA exist and

that even though it has structure DNA is not a language. Computer simulations and a biological
approach to this problem further support these results.

1. Introduction

The evolution of the genetic information and the
generation of genes is one of the most challenging
problems facing evolutionary and molecular biol-
ogists. The principles by which nature produced the
genetic information and subsequent generation of
DNA sequences are still not well understood. DNA
sequences are strings of the bases (nucleotides) A, T,
C, G and are characterized as coding (intron-less) or
non-coding (intron-containing) sequences. Since the
early 1970s, scientists have attempted to discover
some kind of order or hidden structure in DNA
sequences to discriminate between coding and
non-coding regions, to find translation initiation sites,
to explore and understand function in genes, etc. With
the advent of DNA sequencing techniques in the late
1970s, researchers had the opportunity to probe DNA
for such “order”. As a result several important issues
have been raised including the periodicity of three
(Tsonis et al., 1991; Shepherd, 1982), the suggestion
of spectra appropriate to 1/f* noises (Voss, 1992) and
of long-range correlations (Peng et al.,1992, Nee,
1992; Prabhu & Claverie, 1992; Tsonis et al., 1993;
Tsonis & Elsner, 1995; Karlin & Brendel, 1993), the
existence of local construction rules (Tsonis et al.,
1996) and recently the connection of non-coding
sequences to linguistics (Mantegna et al., 1994).
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A remarkable feature of languages is Zipf’s law
(Zipf, 1949). This law dictates that the frequency, f,
of each word in a text and its rank (the most frequent
word having rank 1, the second most frequent word
having rank 2 and so on), r, are related according to
the power law f, oc r™* with k ~ 1 for all languages
[see also a recent review by Casti (1995)]. A similar
analysis motivated by this law was applied lately
(Mantegna et al., 1994) to DNA sequences and it was
concluded that non-coding sequences exhibit linguis-
tic-type features as they obey similar power law (but
with much smaller k). A potential problem, however,
of this analysis is that the power law was assumed to
exist a priori and no comparison to other possibilities
was offered.

The power law, y = Cx*, can be viewed as the
solution of the differential equation dy/y = adx/x.
Such an equation specifies that if x changes from x;
to x; (x; > x,), then y is magnified by a factor (xz/x:)".
Such properties are appropriate to fractal sets
(Mandelbrot, 1983). DNA sequences, however, are
characterized by more than one local construction
rules that apply to different scales (Karlin & Brendel,
1993; Tsonis et al., 1996). In 1993 Karlin & Brendel
presented empirical and theoretical arguments that
proved that such “patchiness” cannot justify power
laws in spectra and in random walks generated by
DNA sequences (see also Tsonis & Elsner, 1995).
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Given the above facts the question is posed whether
or not local construction rules justify Zipf-like laws in
DNA sequences.

2. Data Analysis and Computer Simulations

In order to answer this question we probed the
structure of DNA sequences (both coding and
non-coding) using the method of the sliding window
of length n (Mantegna er al., 1994). According to this
approach a window of length » (i.e. n nucleotides) is
considered and the different blocks of size n are
obtained by shifting the window by one nucleotide at
a time. Each block corresponds to a specific
arrangement of the four nucleotides of length n. For
a given n there exist 4" distinct arrangements. For a
completely random sequence of A, T, C, G, (where
each nucleotide is selected randomly with a 25%
probability) all 4" arrangements will appear with the
same frequency (assuming that the sequence is
sufficiently long). If some kind of order or underlying
construction rules exist, then one would expect a

" relation to emerge between the relative frequency ( f)
of an arrangement and its ranking (where the most
frequent arrangement is ranked 1 and the less
frequent is ranked 4"). The sliding window approach

is an effective way to reveal construction rules or the’

existence of periodicities. In fact such a practice can
be found behind several mathematical approaches
that are used to study periodicities and deterministic
structure and the degree of complexity in data such
as Fourier analysis, Singular Spectrum Analysis
(SSA), attractor reconstruction etc. (Broomhead &
King, 1986; Fraedrich, 1986; D’Alessandro & Politi,
1990).

We considered coding (intron-less) and non-coding
(intron-rich) sequences and we adopted the sliding
window approach thus obtaining for each sequence
an fversus rank plot. Subsequently, we fitted a power
law and an exponential law to the results and
produced the residual (f — f) between the actual ( )
and the estimated (f) relative frequency. We then
plotted the residual against rank. Such a plot provides
an effective way to determine (qualitatively and
quantitatively) the goodness of fit of the considered
laws. Figure 1 shows examples from two coding and
two non-coding sequences. From this figure it is clear
that the power law is not the appropriate model as the
exponential law fits the data amazingly well in all
cases. From the analysis of 20 coding and non-coding
(composed of ~75% to 100% introns) sequences we
find that the overall significance of the exponential
regression is much higher than that of the power law
in all cases. Figure 2 summarizes our results by

showing the distribution of the residual as estimated
from all cases considered for (a) the exponential fit,
and (b) the power law fit. This figure clearly shows
that the power law results in a highly skewed
distribution. The exponential fit on the other hand
results in a rather symmetrical distribution with a
mean very close to zero and a small standard
deviation. As such the power law does not guarantee
that the mean residual error will be zero which is a
fundamental criterion for selecting an unbiased fit.
Using the ¢-test we find that the null hypothesis that
the mean of the residual distribution is zero cannot be
accepted in the case of the power law at an acceptable
significance level. On the contrary in the case of the
exponential law the hypothesis is accepted at a
confidence level of 95%. Other choices of n between
3 and 8 also do not justify power laws. It is important
to note here that the estimated parameters of the
exponential fits (for n = 6) do not seem to indicate
systematic differences between coding and non-coding
sequences. As such, our analysis offers no justification
for structural “biases” between coding and non-cod-
ing sequences. Although the sliding window approach
does not produce words as in languages, fitting power
laws to the data over the range of the first 1000 most
frequent arrangements (i.e. 1 < rank < 1000) has
been unjustifiably used to suggest connections
between non-coding sequences and linguistics (Man-
tegna et al. 1994). However, no comparison to other
laws was ever offered. Our analysis indicates that
even if only that range is considered the power law
does not outperform the exponential law which is still
better overall. Since the power law is essential to make
these connections our results suggest that while some
structure exists in DNA, non-coding sequences and
linguistics do not share similar dynamics.
Computer simulations seem to support the above
conclusions. We generated artificial DNA sequences
based on the simple assumption or replication of
primordial blocks and simultaneous mutation. The
results reported in Fig. 3 refer to the sequence
generated by repeating many times the blocks CTG
and AAG. More specifically we first repeated CTG
3000 times and then continued by repeating AAG
3000 times. We thus manufactured a sequence 18000
bases long whose first half dominated by CTG
and the second half is dominated by AAG
(CTGCTGCTG. ... AAGAAGAAG....) Such a
design incorporates the basic assumption of gene
evolution by duplication and simultaneous mutation
(Ohno, 1988; Yomo & Ohno, 1989) and the fact that
DNA sequences may involve more than one local
construction rules (Karlin & Brendel, 1993, Tsonis
et al., 1996). We then allowed the gene to mutate at
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FiG. 1. Residual between the observed (/) and estimated relative frequency ( 1) of the possible 4" arrangements (for n = 6) as a function
of their rank. Estimated values are obtained from a power law (broken line) and an exponential (solid line) fit to the observed frequency
data. The curve providing the smaller residual values represents the better fit between the two laws. The exponential law is superior in
all cases. The top two graphs correspond to the intron-rich sequences (a) human B-cardiac MHC (HUMBYMH?7) and (b) adenovirus type
2 (ADBCG). The bottom two graphs correspond to the intron-less sequences (c) bacteriophage A (LAMCG) and (d) human mitochondrion
(HUMMT). Note that the exponential law applies equally well to coding and non-coding sequences.

a rate of 67% and applied the sliding window
approach. The results in Fig. 3 indicate that again the
power law is not the best fit. Similar results are
obtained with other simulated DNA sequences
involving at least two construction rules and mutation
rates between 50 and 75%. We would like to stress
here that comparisons to exponential fits in this work
are shown for the purpose of demonstrating that the
power law is not the appropriate law and not to
promote some kind of universality of the exponential
law in DNA sequence. The fact that exponential laws
fit the data in some cases exceptionally well, may
reflect the basic assumptions behind gene evolution
(Ohno, 1988; Yomo & Ohno, 1989). Accordingly, it
would appear that a model describing building-up or
growth processes would be more consistent with
theories of gene evolution. In its simplest form such
a model can be offered by the differential equation
dy/dx = ay whose solution is the exponential law
y = Ce*™.

3. A Biological Approach

Even though the results presented up to now show
that the sequences are not strictly random, they cast
doubts on possible connections to linguistics. To
further investigate this possibility we thought it
necessary to devise a “biological”” assay. We assume
that if a connection exists between DNA and linguis-
tics, then real DNA sequences must be obtained if
sentences were “transformed” to DNA sequences (as
for in the case of music derived from DNA sequences
(Ohno & Ohno, 1986, for example). Accordingly, we
should search not necessarily for DNA “words” but
for some kind of alphabet. In fact, what has made
languages a powerful tool is not the words alone but
the phonetics which were made by precise and
selected combination of letters in every language. The
letters of a given alphabet follow a given distribution.
The codons in coding DNA sequences also follow a
certain distribution. It, thus, appears logical to create
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FiG. 2. Frequency distribution of the residuals from all cases
considered estimated for the exponential law (a) and the power law
(b). The overall superiority of the exponential law is clear (see text
for details).
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some kind of equivalence between letters and codons.
In the English language there are 26 letters and in
coding sequences we find 64 codons. The 26 most
frequent codons make up 70% of the codons found
in coding sequences. Accordingly, a good and simple
transformation would be to associate the most
frequent letter to most frequent codon and so on
down to the least frequent letter and the 26th most
frequent codon. A similar transformation can be
found for the non-coding sequences. Interestingly,
non-coding sequences exhibit a certain distribution of
triplets as well. This is a different distribution than
that of the codon triplets but it appears to be very
consistent among introns. For coding sequences the
26 most frequent codons (with their relative frequency
in percentage given by the value in the parenthesis)
are (Watson er al., 1987): AAG (4.9), CTG (4.7),
GCC (3.8), GAG (3.4), GTG (3.3), GGC (3.2), GCT
(2.8), ACC (2.8), TTC (2.8), CAG (2.8), AAC (2.8),

CTC (2.7), GAC (2.4) ATC (2.4), TAT (2.3), GGT
(2.2), AGC (2.1), GTC (2.1), GAA (2.1), CAC (2.1),
AAA (1.9), TCC (1.8), CCC (1.7), TCT (1.6), GAT
(1.6) and ATG (1.6). From 20 different genes with a
total of 10868 triplets we find that the following are
the 26 most frequent triplets in non-coding sequences:
AAA(4.8), TTT (4.6), TTA (3.4), TAA (3.0), ATT
(2.8), ATA (2.7), AAT (2.7), TAT (2.5), AAG (2.3),
GAA (2.0), CAA (2.0), TCT (1.9), TTC (1.9), TGA
(1.9), ATG (1.8), TTG (1.8), GAG (1.8), TGG (1.8),
AGA (1.8), TGT (1.7), CTA (1.7), GAT (1.7), GCA
(1.6), GTA (1.6), AGG (1.6), and TAG (1.6). It is
interesting to note here that even though the most
frequent triplets are different in coding and in
non-coding sequences, their frequency distributions
(see numbers in parenthesis) are very similar to each
other. Having those transformations we can then
consider a sentence and create two DNA sequences
one being a “coding” and one being a “non-coding”
sequence. Two different types of sentences were
employed. Type 1 involved usual sentences that obey
the grammatical rules (syntax). Type 2 involved
strings of random words that obeyed no rules
whatsoever. Subsequently, the constructed coding
and non-coding DNA sequences were compared with
real DNA sequences in the Genebank for homologies.
We found that both type 1 and type 2 sentences result
in DNA sequences that score similar homologies with
real DNA sequences. This result would indicate that
“linguistically” speaking DNA has no syntax but it
may have words or phonetics-like structure. In order
to test this we shuffled the letters in the original
sentences and repeated the analysis. The shuffling
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FIG. 3. Same as Fig. 1 but for an artificial DNA sequence (see
text for details). Key: ——, exponential law; —— —, power law.
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destroys every possible structure within a word and
provides an appropriate negative control or surrogate
data. We_ find that these new constructed DNA
sequences score homologies with real DNA sequences
that are identical to the scores of DNA sequences
constructed from the original sentences. Thus, DNA
sequences from actual sentences, from strings of
random words, and from their shuffled surrogates
result in similar homology scores with real DNA
sequences. The same procedure was applied to
sentences from another language (Greek) with
identical results. The inescapable conclusion is clear:

DNA sequences show no linguistic properties.

4. Conclusion

The application of mathematical or statistical
techniques to DNA sequence is in its beginning
stages. If the evolution or function of genes, proteins
etc. obeys certain deterministic rules, then math-
ematics will be able to tell us exactly what these rules
‘are.The benefits of such discoveries would be
enormous as they may eventually assist experimental
biologists in designing experiments and interpreting
results. However, the search for determinism in DNA
sequences cannot evolve unless we discover the very .
basic and guiding models or principles. In that respect
it is imperative that we proceed with caution. Our
work is a step toward that direction. We believe that
developments in this area will be forthcoming and
that many insights about DNA sequences will be

revealed.
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