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Hydrological applications of satellite data
1. Rainfall estimation
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Abstract. In this study we investigate the ability of satellite visible and infrared
data to produce reliable rainfall amount estimates that could be used by hydrological
models to predict streamflow for large basins. Rainfall estimates are obtained by
(1) classification of clouds to raining and nonraining clouds and (2) applying a
multivariate statistical model between rainfall and indices derived from the satellite
observations. Satellite data corresponding to 180 randomly selected days in the
period May-September 1982-1988 are used in this study that focuses on the
estimation of daily rainfall. The Des Moines River basin in the midwestern United
States is the application area. The correlation coefficient between model—predlcted
and rain gauge-observed mean areal precipitation over areas of order 10,000 km?
found to be about 0.85. In an example application the satellite ralnfall es\:lmates
are used to force the operational National Weather Service hydrologic forecast
model for a subbasin of the Des Moines River basin. The model has been calibrated
with rain gauge data. The results show that differences between rain gauge and
satellite rainfall input generate differences in flow forecasts and upper soil water
model estimates, which are a function of the antecedent soil water conditions. A
companion paper [Guetter et al., this issue] quantifies the effects that the differences
between rain gauge and satellite rainfall estimates have on flow and upper soil water

model predictions for various spatial scales and for hydrologic models calibrated

with and without satellite data.

1. Introduction

Real-time flow prediction in large catchments has
seen significant advances in the last few decades mainly
as a result of the following two reasons: (1) the use of
the computer with numerical hydrological models has
facilitated computations associated with the discretiza-
tion of large catchments to smaller hydrologic units and
has allowed the utilization of complex hydrologic and
hydraulic simulation models in real time, and (2) ad-
vances in sensor and communication technology allowed
the use of real-time hydrometeorologic data obtained
at remote sites. Thus conceptual hydrologic models are
routinely used in the United States for the real-time pre-
diction of streamflow from headwater basins [e.g., Peck,
1976; Brazil, 1989; Georgakakos, 1986a, b]. Similarly,
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hydraulic river routing models have been used in the
real time simulation and prediction of flow in large rivers
le.g., Fread, 1985]. Automated real-time databases that
include data from automated on-site sensors are becom-
ing the norm for Federal and State Agencies with real-
time flow prediction and water resource management
missions [e.g., Bae et al., 1995; Georgakakos and Smith,
1990; HRL Staff, 1972].

Real-time flow prediction along those lines was based
on the determination of mean areal rainfall estimates
from point rainfall data. In recent years the digitization
of radar reflectivity data and their conversion to rain-
fall estimates has prompted the development of mod-
els suitable to accept input that is spatially distributed
in small spatial scales (e.g., see articles in the works of
Collinge and Kirby [1987] and Wyss et al. [1990]). Also,
methods for merging radar rainfall data with rain gauge
data have been developed for a more reliable estimation
of mean areal rainfall over hydrologic catchment units
[e.g., Creutin and Obled, 1982; Krajewski, 1987].

Here we extend the above effort by examining the
feasibility of using physically based hydrologic and hy-
draulic models driven by mean areal rainfall estimates
obtained from satellite (GOES) visible (VIS) and in-
frared (IR) temperature data. This problem is of par-
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ticular interest for situations where other rainfall input
is lacking or is unreliable (remote areas, mountainous
terrain, etc). The presentation is divided in two parts.
This paper presents the rainfall estimation procedure
from satellite visible and infrared data and shows exam-
ples of application of the estimated rainfall to predict
river flows. The second part [Guetter et al., this issue]
is a more detailed analysis of the utility of satellite data
in operational hydrologic forecasting on various spatial
scales.

2. Rainfall Estimation From Satellite
Imagery

2.1. Related Work

In order to derive a mean rainfall amount for a given
area we must first produce the rain area from the satel-
lite images, and then we should link this estimate to
rain amounts on the ground. In the past many meth-
ods to delineate rain area form satellite images have
been proposed. Those techniques can be divided into
three major categories: (1) the indexing techniques, (2)
the life history techniques, and (3) the bispectral meth-
ods. According to the indexing techniques (for a re-
view, see Barrett and Martin [1981]), rainfall depends
on the cloud type. The rainfall area is found after the
clouds have been classified to various types according to
their spectral properties. The life history methods make
use of information provided by the last two preceding
half-hour GOES infrared images in order to estimate
point rainfall rates [Scofield and Oliver, 1977; Griffith et
al., 1978] and volumetric rain rates [Stout et al., 1979].
These techniques are based on the observed growth of
the clouds (which are defined by a single visible or in-
frared threshold) and have provided very useful results
especially in cases of strong convection. According to
the bispectral methods the rain area is determined us-
ing information from both visible and IR images [Love-
joy and Austin, 1979; Bellon et al., 1980]. Basically,
these techniques define an optimum boundary in the
visible/infrared domain which is used to discriminate
between rain and no-rain. This optimum boundary is
defined using an original pattern recognition technique
involving satellite and coextensive radar data. Accord-
ing to this technique the probability of precipitation as
a function of VIS and IR intensity is-found, and then an
appropriate probability threshold is determined that de-
lineates a satellite rain area equal to the observed radar
rain area. Since the probability of precipitation is dif-
ferent from day to day, these methods depend on radar
data, and therefore their applicability is limited to only
areas over which adequate coverage is available. Subse-
quently, Tsonis and Isaac [1985] developed a technique
in which the optimum boundary is determined with-
out the need of coextensive radar data; radar data are
used only for training and verification purposes. Their
technique makes use of the bivariate frequency distribu-
tion in the visible/infrared domain. It has been shown
[Tsonis, 1984] that the observed peaks of such distribu-
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tion correspond to different classes. Tsonis and Isaac
[1985] showed that the peaks that correspond to rain-
ing clouds tend to cluster in a well-defined region of
the visible/infrared domain thus allowing their discrim-
ination from the other classes (clear skies, nonraining
clouds, etc.). After a peak has been attributed to rain-
ing clouds the rain area is defined via a simple stepwise
procedure outlined by Tsonis and Isaac [1985).

Most if not all, however, of the above approaches have

‘no success in providing information on mean area rain

rate. This is explicitly investigated by Negri et al.[1984]
and Negri and Adler [1987a, b]. It is demonstrated (for
convective cases, only) that while the satellite data are
quite promising in delineating rain area, they are not
adequate in providing any mean-area rain rate infor-
mation.

Thus, after the rain area has been estimated from the
VIS/IR satellite data we must look somewhere else if we
wish to assign an average rain rate (and consequently
total rain amounts) for that area. A first answer to
this problem has been recently proposed by Rosenfeld
et al. [1990]. According to them, instantaneous area
average rain rate R can be obtained with 5 — 10% accu-
racy over a large domain by measuring the fraction of
the total radar rain area F).(7) covered by rain intensity
greater than a threshold 7. For each radar scan, F,.(7)
together with R are found, and the corresponding point
is plotted on a R versus F,(7) diagram. Accumulat-
ing many such data points allowed Rosenfeld et al. to
obtain fairly accurate relations between R and F,(7).
They have demonstrated that R = f(F,(7)), where f is
linear. Thus, if for a given area we derive the function
f (which most likely varies with climatology), we can
estimate a mean rain rate for the area. It is interesting
to note here that the existence of those relationships
has actually been predicted theoretically [Atlas et al.,
1990; Kedem et al., 1990]. In the work of Kedem et al.,
for example, the precise linear relationship between the
area average rain rate and fractional area covered by
rain above a fixed threshold is theoretically highlighted
by observing that rain rate has a certain mixed distri-
bution. Of course, in our case we do not have the rain
area from a weather radar but from satellite data. Note
that the rain area derived from satellite imagery is not
the cloud area. Such rain area approximates the actual
area whose boundary is the 0.0 mm/h isopleth. Thus,
if the above approach is employed in our study, we will
have to assume that the satellite-derived rain area is
the actual rain area for 7 = 0.0 mm/h. We will denote
this fraction as F,(0), where the subscript s stands for
satellite. Thus we will be seeking a relation between
F,(0) and R averaged over a proper time interval. In
this study we will adopt as this time interval the length
of a day (24 hours). This interval is based on consid-
erations of basin response and on tests of the employed
hydrologic/hydraulic model with historical data.

2.2. Study Area and Data

The Des Moines River basin with outlet at Strat-
ford (Figure 1) is an ideal test area since an extensive
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Figure 1. The geographical area of interest.

and prototype real-time hydrometeorological database
(a network of 29 rain gauges and 2 radars) exists for that
area as part of the U.S. Corps of Engineers, Rock Island
District real-time monitoring system. Also, several hy-
drologic models (i.e., an API model, the HEC1 model,
and the modified Sacramento model) have been imple-
mented and are now in operational use for predicting
flows in the aforementioned 15,000 km? basin [e.g., Bae
et al., 1995; Bae and Georgakakos, 1994]. The dense
rain gauge network provides hourly amounts of precipi-
tation in the area of interest. Daily mean areal rainfall
amounts are computed for the whole basin according to
the standard National Weather Service (NWS) interpo-
lation procedures.

The satellite data used in this work are GOES visi-
ble (0.54-0.70 pm) wavelength and infrared (10.5-12.6
pm) wavelength images. The temporal resolution of the
satellite data is 30 min, and the spatial resolution is 4 x4
km. It should be noted at this point that the resolution
of the sensed infrared images is 4 x8 km. From these im-
ages, 4 x4-km-resolution images are usually constructed
for a better resolution equivalence between the infrared
and visible data. The intensity (count) range of the
visible and infrared images is 0-255.

The satellite data are used to develop a scheme that
will delineate the rain area over the region of interest.
The scheme of Tsonis and Isaac [1985] will be applied to
define the boundaries (in VIS/IR space) that separate
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rain from no-rain. In order to derive those boundaries
(climatology) we considered the period May-September
1982-1988 and selected images every 3 hours from 180
randomly selected days. Sampling every 3 hours guar-
antees that_successive images will not be correlated
[Tsonis and Isaac, 1985]. From those days a training
sample of 175 days were used to derive the climatol-
ogy, and the remaining 5 days were used for verifica-
tion. Because the visible images will be involved in the
analysis, only VIS/IR pairs at 1200, 1500, 1800 and
2100 Local Time (LT) can be considered. Thus, for a
given day, satellite statistics are based on, at most, four
VIS/IR pairs or on information for at most 12 hours.
Since the area of interest is about 208 x 336 km?, the
VIS/IR images (at a resolution of 4 x 4 km?) provide
over 6,000,000 pixel values for the entire area. This is
more than enough to ensure an accurate determination
of the satellite climatology of the area. For the same
times we also decided to use the daily rainfall amounts
derived from the available dense rain gauge network.
This data set will help in the discrimination of the rain-
ing and nonraining clouds that is necessary for the Tso-
nis and Isaac approach and to derive the relationship
between the rain area which will then be used by the
hydrological models. We chose the rain gauge data in
favor of radar data because (1) the entire area is not cov-
ered by a single radar (this introduces problems in the
overlapping region due to different radar calibrations),
(2) we are interested in total amounts on the ground
rather than actual rain area and intensity at a specific
level, and (3) the rain gauge system is as effective as a
radar in applying the Tsonis-Isaac procedure.

2.3. Procedure and Results

Using the training sample, for each one of the avail-
able times and for every available VIS/IR pair of im-
ages, the bivariate frequency distribution was derived
over the area of interest by subdividing the data into in-
tervals of 16 units wide in both the visible and infrared
domain. We will denote this frequency as f(i,5) ¢,j =
1,16. If the resulting frequency at any of the 16 x 16
entries is greater than the immediate eight neighbor en-
tries, that indicates a peak and the corresponding fre-
quency is denoted as f(ip,Jjp). The exact coordinates
in the VIS/IR domain of the peak (V;,I,) are then de-
termined by considering the weight of each one of its
neighbors. Figure 2 shows the location of all the peaks
in the VIS/IR domain. In order to avoid contamination
of Figure 2 due to small-scale and/or spurious peaks,
only peaks that correspond to at least a relative fre-
quency of 0.05 were considered. This plot is very sim-
ilar to the one initially produced by Tsonis and Isaac
[1985] but it includes 1 order of magnitude more data.
The plot can roughly be divided into four quarters by
straight lines VIS=120 and IR=120 that would sepa-
rate the following main classes: Bottom left quarter,
clear skies; bottom right quarter, low-level nonraining
stratus clouds; top left quarter, cirrus clouds; and top
right quarter, raining clouds.

The accuracy of the scheme in predicting rainy days
is approximately 88%. This estimate is derived as fol-
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Figure 2. Location of the peaks resulting from bi-
variate distributions in the visible/infrared (VIS/IR)
domain. The peaks in the bottom left correspond to
clear skies, peaks in the bottom right correspond to
low-level nonraining clouds and fog, peaks in the top
left correspond to high-level nonraining clouds (cirrus),
and peaks in the top right correspond to raining clouds.
Data are based on satellite images from 180 randomly
selected days.

lows: If one or more VIS/IR pairs results in bivariate
distributions with peaks that are attributed (from Fig-
ure 2) to raining clouds, then the day is classified as a
rainy day. Seventy-seven days in our training sample are
classified as rainy days. The classification is considered
as accurate if the daily average rainfall amount from
the rain gauge network is greater than 0.025 inches/d
(0.064 cm/d). Accordingly, we find that 68 of the 77
days (=~ 88%) were correctly classified as rainy days.
The accuracy of the scheme in predicting nonraining
days is about 92%. Now the scheme classifies a day
as nonrainy if all four VIS/IR pairs produce bivariate
distributions which show no peaks attributed to raining
clouds. Sixty-four days in our training sample were thus
classified as nonrainy. Here a classification is considered
as accurate if the daily average rainfall amount for the
rain gauge network is less than 0.025 inches/d (0.064
cm/d). Accordingly, we find that 59 out of the 64 days
(~ 92%) are correctly classified as nonrainy days. Days
for which the above conditions were not met were not
classified and were not considered in the following cal-
culations. This critical value of 0.025 inches/d (0.064
cm/d) was chosen in order to avoid contamination of
the statistics from small scales or random events.

In the work of Tsonis and Isaac [1985], once a peak
has been assigned to raining clouds the rain area is de-
termined from all pixels having a visible count greater
or equal to V. This area would be an estimation of
F¢(0). Having established the above, the first task was
to determine whether or not the derived F,(0) will pro-
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duce a daily average F,4(0) that is well correlated to
the daily mean areal rainfall R. The average F(0) is
obtained from the pairs of visible and infrared images
available for that day. The procedure is subject to the
following errors. If most of the rain falls at night, satel-
lite estimates of rainfall amounts would be too small. If
most of the rain falls during the day, satellite estimates
would be close to actual rainfall amounts as long as suf-
ficient information (i.e., VIS/IR pairs) is available. If
there is insufficient information, satellite estimates can
be either smaller or larger than actual rainfall amounts.

In Figure 3 it is concluded that F4(0) is actually un-
correlated to R. Note that lately Short et al., [1993]
have demonstrated good correlations between R and
F,(0), where F,.(0) is defined from continuous radar
coverage and R is defined from a rain gauge network.
Thus, if a similar relation exists between F(0) and R,
the source of the above errors has to be minimized. A
possible remedy would be to consider days for which
satellite coverage is as large as possible. Given the lim-
itations of the visible images, we decided to eliminate
all raining days for which we did not have at least three
VIS/IR pairs available. That left us with 24 raining
days in our training sample and 3 in our verifying sam-
ple. Figure 4 shows F,(0) versus R for those 24 days.
We now see that the relation becomes a bit clearer. The
coefficient of determination r? of a linear fit of F(0)
on R is ~ 0.45. This means that that F,(0) explains
~ 45% of the variance of R. We deem this as not quite
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Figure 3. For a given pair of VIS/IR images, if a
peak in the bivariate distribution is attributed to rain-
ing clouds, a rain area according to Tsonis and Isaac
[1985] is produced. From all the available pairs in a
given day the average area is estimated and is plotted
against the daily area-averaged amount of rain on the
ground as given from a network of 29 rain gauges. A
good relationship does not emerge. Part of the problem
is due to the fact that VIS/IR pairs were not available
throughout the day, and rain often fell when satellite
data were not available.
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Figure 4. Same as Figure 3, but including days for
which at least three VIS/IR pairs are available. A better
relationship begins to emerge, but the overall coefficient
of determination is 0.45. We consider this result as
unsatisfactory, and we continue with the development
of a multivariate model.

acceptable for our purposes. We therefore decided to

" look for more variables that could be considered in the

problem of estimating a daily average rainfall amount
from satellite VIS/IR images.

2.4. A Multivariate Model

In searching for other satellite variables that would
increase the correlation between predicted and actual
rain amount we turn again our attention to the bivari-
ate distribution. Figure 5 shows bivariate distributions
for June 14, 1983 at 1500 LT (Figure 5a) and August 26,
1987 at 1500 LT (Figure 5b). Figure 5a exhibits two
not very pronounced and rather wide peaks. The peak
at high-visible and high-infrared counts corresponds to
raining clouds. The other corresponds to clear skies.
Figure 5b exhibits a peak which is very pronounced and
very narrow and corresponds to raining clouds. The cor-
responding rainfall amount in the latter case is greater
than that in the former case.

Investigation of many bivariate distributions pointed
out that, on the average, for peaks that correspond to
raining clouds greater rainfall amounts tend to corre-
spond to (1) narrower peaks, (2) higher frequencies of
the peak, f(ip,jp), and (3) larger coordinates of the
peak in the VIS/IR domain, V,, and I,. We also found
that the mean visible count for the cloud area delineated
from all pixels with a visible count V' > V, (the sub-
script ¢ corresponds to the visible count that separates
clouds from no-clouds) is often useful (see also Negri and
Adler [1987a, b]). According to T'sonis [1984], V. ~ 120.
We will denote this mean visible count as < V' >. The
above statistics are expected to relate to physics under-
lying the problem. Large < V >, V,, and I, values
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Figure 5. Bivariate distribution for (a) June 14, 1983 at 1500 local time (LT) and (b) August
26, 1987 also at 1500 LT. As is explained in the text, the general shape of these distributions

provides clues for improved rain estimation.

indicate thicker and taller clouds, and large f(ip,7p)
together with a narrow peak indicate that thicker and
taller clouds dominate the area. In such cases, more
rainfall is anticipated. Note that the employed vari-
ables define the shape and location of a peak attributed
to raining clouds and thus characterize the “satellite”
rainfield to a large degree. We thus decided to build a
six-variable multivariate model of the form ’

R = alfs (0) + Clz?(ip,jp) + ag,Vp

+aJp + asgv,] + ag < V> (1)
where the bar indicates daily average, R (inches per
day) is the area-averaged rainfall amount, Fy(0) is the
rain area (km?) as delineated by the previously de-
scribed approach, f(ip,jp) is the relative frequency of
the peak, V,, and I, are the coordinates of the peak in
VIS/IR domain, < V' > is the mean visible count of the
cloud area, and Sy,; is the measure of the narrowness
of the peak, which is defined as

1 ip+1l  Jp+l _
Shi=35 > > F&DH-D* (@
k=ip—1l=j,—1
where ) ‘
_ 1 ip+1  jp+1
F=5 > > fkD 3)

k=ip—1l=jp,—1

For our raining training sample, (n = 24) we found
that a; = —4.987 x 1075, ay = 2.842, a3 = —1.387 x
1072, a4 = —2.943 x 1073, a5 = —1.335 x 1073, and
ag = 1.89 x 1072.

The above statistical model results in a multiple re-
gression coefficient of determination 72 = 0.70 (i.e.,
r = 0.84). Variations of this model (to include a
nonzero intercept and/or fewer variables) were also con-
sidered but resulted in smaller r? values. Our six vari-

ables explain 70% of the variance of R as measured
by the rain gauge network. More specifically, we find
that F4(0), f(ip,Jp), Vp, Ip, Sv,1, and < V > explain
46%, 6%, 3%, 2%, 9%, and 4%, respectively of the
variance in R. We consider this result a great improve-
ment over satellite-derived rain area alone. Note that
eliminating any of the six variables results in smaller 72
values. '

Subsequently, we applied the overall procedure and
statistical model to the 5 remaining days in the train-
ing sample. Out of those 5, 3 were correctly classified
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Figure 6. Predicted from the multivariate model, daily
area-averaged rain amount versus the actual amount
for the training sample (open circles) and the verify-
ing sample (black squares). The overall coefficient of
determination is now 0.70.
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as rainy days (June 6, 1982; May 24, 1984; and May 27,
1986). The remaining 2 (August 8, 1983, and July 7,
1985) were correctly classified as nonrainy days. For the
3 rainy days the rain gauge network reported area aver-
age daily rainfall of 0.479, 0.219, and 0.424 inches/d, re-
spectively. Equation (1) predicts 0.380, 0.143, and 0.295
inches/d, respectively. Figure 6 shows for the avail-
able data the predicted, Rg versus the actual, R, using
equation (1). Note that a cross-validation procedure re-
sults in very comparable results. The parameter values
of the multivariate model may differ somewhat, but the
general conclusions remain similar. This suggests that
multivariate regression models and the variables cho-
sen have captured the essence of the problem and can
provide acceptable rainfall estimates. Thus they show
promise for further use in studies in the area of rainfall
estimation from satellite data.

2.5. Examples of Hydrologic Forecasts

The Sacramento soil water accounting model used
in operational hydrologic forecasting by the U.S. Na-
tional Weather Service [Bae and Georgakakos, 1994] and
a kinematic routing procedure [Georgakakos and Bras,
1982] were used to forecast daily flows in the 2160 km?
Boone River subbasin of the Des Moines River basin.
The Boone River basin with outlet at Webster City,
Towa, is located in the easternmost portion of the Des
Moines River basin. Bae and Georgakakos [1994] and
Georgakakos et al [1995] describe the basin hydrology
and the calibration and validation of the hydrologic
model with rain gauge rainfall data. Cross correlations
between the daily observed and predicted flows were
about 0.85 with a ratio of residual mean to observed
flow mean of 0.02.

Two experiments were made with the available satel-
lite estimates of rainfall. The hydrologic model was run
twice for the period from January 1, 1980, through De-
cember 31, 1987. The first time the rain gauge data
comprised the forcing of the hydrologic model. The
second time the satellite data were used when avail-
able. During the second run, when satellite data were
not available (most of the time), rain gauge rainfall was
used. Satellite rainfall estimates corresponding to the
large Des Moines River basin area were used as input
for the smaller Boone River basin in this preliminary
study. The companion paper [Guetter et al., this issue]
examines the problem of spatial scale in detail.

Figure 7 shows the following three time periods: a
period of high flows well predicted by the calibrated
model, a period of low flows well predicted by the cal-
ibrated model, and a period of average flows underes-
timated by the calibrated model. In Figures 7a-7c the
observed and predicted Boone River basin flows at Web-
ster City, Iowa, are shown for the cases of rain gauge and
satellite rainfall. Inverted on the horizontal axis are the
rainfall estimates with arrows indicating the times for
which we had satellite data. Figures 7d-7f show upper
soil water estimates of the Sacramento model for each
case together with inverted rainfall on the horizontal
axis. It is apparent that the satellite rainfall estimates
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are reasonable. During the first period when upper soil
water is near saturation, an increased satellite rainfall
amount generates an overprediction in upper soil water,
which in turn generates a noticeable overprediction of
the flow around day 5 from start. On the other hand,
substantial overprediction of the upper soil water dur-
ing the first part of the second period results in a minor
overprediction of the satellite-driven flow as compared
to the flow forced by rain gauge rainfall. These results
indicate that the effect of differences between satellite
and rain gauge rainfall estimates on flow predictions de-
pends on antecedent soil water conditions. The results
for the third period corroborate this observation and in
addition show that calibration problems with the opera-
tional hydraulic models will likely persist when satellite
rainfall data are used.

These results indicate that quantifying the effects
of differences between satellite and rain gauge rainfall
on hydrologic forecasts must involve a comprehensive
study that covers the full dynamic range of response of
the models. In addition, it should account for the issue
of model calibration using the satellite data versus us-
ing only the rain gauge rainfall data. Such a study is
described in paper by Guetter et al. [this issue].

3. Comments and Concluding Remarks

In this study we investigated the feasibility of esti-
mating areal averages of rain amounts from satellite
VIS/IR imagery. We presented an approach by which
these amounts can be obtained using information ex-
tracted from bivariate distributions and a multivariate
model. Our approach requires the use of visible im-
ages. As such, it relies on information during the day-
time only. Accordingly, as discussed earlier, our ap-
proach would result in errors if precipitation falls at
night. Considering the diurnal variations of rainfall in
this region [Wallace, 1975; Winkler et al., 1988], er-
rors are quite likely. Refinements must be considered
before such an approach becomes operational. Possible
improvement may result from using only IR images dur-
ing the nighttime. Research in this area is in progress,
and results will be reported later. Nevertheless, even
with this limitation, we show that our methodology has
the potential for producing acceptable estimates of areal
averages of rain amounts. As Guetter at al. [this issue]
reports, these estimates can effectively be used as input
to hydrological models for streamflow prediction and
soil moisture estimation.
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