JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. D21, PAGES 26,527-26,538, NOVEMBER 27, 1996

Hydrologic applications of satellite data:

2. Flow simulation and soil water estimates

Alexandre K. Guetter and Konstantine P. Georgakakos!

Hydrologic Research Center, San Diego, California

Anastasios A. Tsonis

Department of Geosciences, University of Wisconsin, Milwaukee

Abstract. The uncertainty in streamflow simulations and soil water estimates associated with
satellite rainfall forcing is investigated for the Upper Des Moines River basin in the midwestern
United States. Synthetic series of satellite rainfall estimates were produced with a rain gauge-
satellite stochastic model and 10 years of daily rain gauge data (1979-1988) for three basins with
drainage areas ranging from 2,000 km? to 14,000 km2. The synthetic satellite rainfall series was
based on observed satellite visible and infrared data which provided estimates of satellite rainfall for
180 randomly selected days in the period 1980-1987. Streamflow and soil water estimates were
obtained with a rainfall-runoff-routing model (3R), based on soil water balance and accounting for
snowmelt and frozen ground effects. Sensitivity of flow prediction with respect to rainfall was
examined for three different conditions: (1) 3R calibrated and forced with rain gauge data, (2) 3R
calibrated with rain gauge data and forced with satellite rainfall, and (3) 3R calibrated and forced
with satellite rainfall. The most important results regarding the effect of satellite rainfall on flow
simulation and soil water estimation for climate studies are as follows: (1) Flow simulation
accuracy is sensitive to the basin scale, yielding higher correlation of simulated with observed
streamflow for larger scales, (2) the hydrologic model forced with satellite data possesses skill
during the period May-July for the midwestern United States, (3) derived upper soil water
estimates are similar to the ones obtained using rain gauge forcing, and derived lower soil water
estimates are lower than those obtained from rain gauge forcing.

1. Introduction

Several techniques and algorithms have been developed to
estimate rainfall from satellite data (e.g., Engman [1993] for a
broad review; Wilheit et al. [1994], for rainfall from passive
microwave measurements; and Adler et al. [1994] for adjusting
infrared rainfall estimates with microwave measurements). In
part 1 of this study [Tsonis et al., this issue] daily mean-areal
rainfall estimates were obtained for a number of days over a
208 x 336 km? area in the midwestern region of the United
States, using (GOES) visible and infrared temperature data. The
large spatial coverage of satellite data makes it attractive for
climatological studies [Negri et al., 1994; Adler et al., 1994],
and it is expected that use of satellite rainfall products will be
the main source of hydrological information for several
regions of the globe. However, several questions remain to be
answered about the implication of using satellite rainfall to
estimate hydrologic states and fluxes. This paper characterizes
the errors in streamflow and soil water estimates of a
hydrologic model forced by satellite rainfall on two different
scales (3,000 km? and 14,000 km?2).

The goals of the analysis are (1) to assess the adequacy of
satellite rainfall for flow simulation over large catchments, (2)
to estimate the errors in streamflow and soil water estimates
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expected when using satellite rainfall for climate studies, (3) to
estimate the uncertainty in flow simulation when satellite
rainfall is given as input to hydrologic-hydraulic models
calibrated with extended series of daily rain gauge data. It is
noted that the first goal is relevant also to long-term
prediction using conditional Monte Carlo simulation, such as
used in the National Weather Service (NWS) extended
streamflow prediction (ESP) components [e.g., Georgakakos
et al., 1995a; Day, 1985].

Streamflow and soil water estimates were obtained with a
physically based, conceptual, rainfall-runoff-routing (3R)
model. The 3R model is a simplified version of the
operational hydrologic forecast component of the operational
NWS River Forecast System. It accounts for two zones of soil
water (soil water is the equivalent depth of liquid water in the
top ~2-m layer of soil), snow accumulation and ablation,
frozen ground effects, and channel routing. The model requires
mean-areal precipitation and evapotranspiration as input and
concurrent series of streamflow for parameter calibration and
validation. The 3R calibration procedure is designed to
conserve mass (long-term average predicted streamflow should
be equal to observed streamflow), and to mimic daily flow
variability. The cross correlation between daily predicted and
observed streamflow exceeded 0.88 for 3R calibrated with rain
gauge data, and varied in the range 0.77-0.85 for calibration
with satellite rainfall, with negligible bias in both cases.

This study assumes that the network of 29 rain gauges in the
Upper Des Moines River basin provides the ground-truth for
mean-areal precipitation estimates over areas greater than
2,000 km? [Bae and Georgakakos, 1992]). Our methodology
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consists of (1) simulating a 10-year series of daily satellite
mean-areal rainfall for three basins of different sizes and
latitudes, (2) calibrating the 3R model with local rain gauge
and large-scale satellite data, (3) computing streamflow errors
and soil water discrepancies associated with the use of satellite
rainfall, and for 3R calibrated independently, first with rain
gauge and then with satellite data.

The next section presents a brief description of the study
catchments. Section 3 summarizes the sampled satellite
rainfall information and the resulting 10-year series of
synthetic satellite rainfall estimates. It is followed by the 3R
model description, parameter estimation, and effects of using
satellite data on parameter estimates, in section 4. Streamflow
simulation uncertainty, sensitivity of soil water estimates, and
sensitivity of soil water spatiotemporal scaling are presented
in sections 5 and 6, respectively. Section 7 contains
conclusions and recommendations.

2. Basin Description

The Upper Des Moines River basin is located in Minnesota
and northcentral Iowa (42-44°N and 94-96°W). The drainage
area is about 14,000 km? of gently rolling terrain, mainly
cultivated with corn and soybean fields. This area is typical of
midcontinental hydrologic regimes in the United States and
has midcontinental extratropical climate. The physiographic
and hydrologic characteristics of the Upper Des Moines River
basin were described by Bae and Georgakakos [1994],
Georgakakos and Bae [1994], and Georgakakos et al.
[1995a,b]. In this study, satellite rainfall estimates and
streamflow predictions are computed for
subbasins, namely the West Fork Des Moines River with
outlet at Estherville, Jowa, and the Boone River with outlet at
Webster City, Iowa, and for the larger Upper Des Moines River
basin with outlet at Stratford, Iowa.

The West Fork Des Moines River at Estherville, called West
Fork hereinafter, is located on the northwest comer of the
Upper Des Moines River basin, and it drains an area of 3,500
km?2. West Fork is characterized by a large number of lakes and
extended periods with frozen ground which affects the
dynamics of soil water response to precipitation (snowfall) in
winter and early spring. The Boone River at Webster, called
Boone hereinafter, drains 2,200 km?2, and is located on the
southeast corner of the Upper Des Moines River basin. The
latitudinal separation between West Fork and Des Moines is
about 1.5°. The Upper Des Moines River basin at Stradford,
called Des Moines hereinafter, includes the West Fork, Boone
and four other subbasins [see Bae and Georgakakos, 1992, for
details] draining 14,000 km?2.

The climatological annual total ~precipitation and
streamflow over the Upper Des Moines are 770 mm yr'! and
150 mm yr'!, with major floods resulting from heavy rainfall
during the summer months or from snowmelt, often
accompanying rain, in late winter and early spring. Maximum
monthly rainfall is in June, while maximum rainfall
variability is in September. The three basins are characterized
by a bimodal streamflow climatology. - Georgakakos et al.
[1995a] has shown that the streamflow climatology for the
Boone River peaks in midspring and midsummer. The
midspring streamflow peak is associated with the concurrent
saturation of the upper layers of soil, following a winter and
early spring period of reduced percolation due to frozen ground
[Figure 11-2.5, Georgakakos et al., 1995a]. The midsummer
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streamflow peak is associated with high soil moisture in both
the upper and lower layers and with heavy precipitation. The
two modes of the bimodal streamflow climatology for both
West Fork and Des Moines are less pronounced than in Boone,
with the midspring streamflow peak dominating the
streamflow annual cycle. Cayan and Georgakakos [1995]
show that the spatial scale of precipitation that is responsible
for seasonal soil water anomalies in Boone is much larger than
the basin area.

3. Satellite Rainfall

Tsonis et al. [this issue] described the mean-areal satellite
rainfall estimates for a 70,000-km?2 area that includes the Des
Moines basin, using a random sample of 180 days from the
period May-September in 1982-1988. In lieu of a long
continuous record of satellite rainfall estimates over the area of
interest we extended the series of satellite rainfall for climate
studies. At first, we investigated the linear relationship and
error structure of concurrent mean-areal satellite rainfall and
rain gauge measurements, and then constructed extended series
of satellite rainfall estimates based on surrogate daily rain
gauge data. We applied the National Weather Service method
of inverse-distance weighted average'for the computation of
daily mean-areal precipitation from daily rain gauge
observations [Larson and VanDemark, 1979] over West Fork,
Boone and Des Moines. Georgakakos et al. [1995b] show that
the cooperative observer rain gauge network in the area is
adequate for the computation of mean-areal rainfall estimates
over areas of order 2,000 km? and greater. The sample of 51
rainy days yielded cross correlations of rain gauge and satellite
rainfall that varied from 0.79 (Boone and Des Moines) to 0.46
(West Fork). However, more than half of the cases
corresponded to mean-areal rain gauge estimates smaller than
2.5 mm day"! for which a wide range of satellite estimates was
found. This wide range of estimates was due to two tendencies
of the satellite rainfall estimation procedure: (a)
underestimation of the number of days with rainfall, and (b)
overestimation of the amount of rainfall when significant
rainfall was in the area. It is noted that small mean-areal
rainfall intensities obtained from a rain gauge network are
often related to small-scale precipitation events associated
with or without extensive high clouds.

A synthetic series of satellite rainfall was built for each of
the three basins based on multidecadal daily series of mean-
areal rain gauge observations and a model contingent on a
threshold, P;. P;is the maximum intensity of rain gauge
mean-areal precipitation for which the satellite-based
estimates show zero rain with a large probability.  The
algorithm follows a Bernoulli distribution, B(1l,p), for
0<P,<P., in which P, is rain gauge mean-areal precipitation
and p is the probability that satellite rainfall is Pg=0 when the
rain gauge mean-areal rainfall is less than P, The probability
that P#0 is (1-p) for P,<P., and the sampled satellite data
shows that the corresponding P can be as high as 10 mm d-1.
When 0<P,<P,, a random number (r,) is generated; if r,<p, then
P=0, otherwise Pg is obtained from a uniform distribution
U(0,10). Equation (1) describes the algorithm for P,>P.,

Py =ag(P)+bs+es 1)
in which oy and B are the regression coefficients between the

satellite and rain gauge rainfall, and & is the Gaussian deviate
of the sampled satellite and modeled rainfall residuals. The
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Table 1. Parameters of the Synthetic Satellite Rainfall Algorithm
Basin P Pg, mmd?! p, mm d’! o B Oresidual
Boone 0.77 2.5 8.14 0.5 14 1.14 33
West Fork 0.75 2.5 6.85 NS NS 4.9
Des Moines 0.79 ’ 2.5 8.48 0.261 5.64 43
NS* is not significant at the 90% confidence level.
regression coefficients o and P, exceeded the 90%  component of the rainfall-runoff model used in the tests is the

significance level for Boone and Des Moines, whereas the
linear relation between rain gauge and satellite rainfall was not
significant at the 90% confidence level for the West Fork; in
this latter case the algorithm was modified to P=p+g, in
which | is the mean of the satellite rainfall sample and g is a
Gaussian deviate. Table 1 summarizes the parameters of the
synthetic satellite rainfall algorithm for the three basins.

Synthetic daily satellite rainfall for the period May-
September was computed from 1965 to 1988 for the three
basins. The satellite procedure underpredicted rainfall
volumes, variability and number of rainy days, as indicated in
Table 2 and Figure 1. It produced higher rainfall rates, but for
fewer rainy days. The large number of rain gauge rainy days is
an artifact of the spatial averaging procedure which distributes
small-scale local rainfall values over a large area. Figures la
and 1b indicate that satellite rainfall climatology (thick solid
line) and interannual variability (thick dotted line) are
underpredicted for Boone and West Fork, whereas Figure lc
shows that satellite rainfall matches rain gauge climatology
for the 14,000 km2 Des Moines basin. In the latter case,
satellite rainfall interannual variability is also underpredicted.

Two factors affect the synthetic series bias: (1) the
threshold P; by assigning no-rain satellite observation to
either light or spotty rainfall (0<P,<2.5 mm d'), and (2) the
parameters of the regression model, by underestimating heavy
rainfall (P,>15 mm d'!). The sensitivity of the synthetic series
bias to P is shown in Table 3, which lists the ratio of satellite
and rain gauge rainfall for 0<P,<2.5 mm d! for the three
basins. There is a small variation of the bias with respect to Py
for Boone (small regression constant), whereas the variation
is significant for West Fork and Des Moines (large regression
constant). The threshold P;=2.5 mm d-1, obtained by sample
inspection is used in the remainder of the analysis. It is
conjectured that the bias found is characteristic of the satellite
rainfall estimation procedure when large-area estimates are
used for small areas (<3,500 km?).

4. Hydrologic Model

For this work, an adaptation of the operational National
Weather Service model was utilized with a hydraulic routing
model (3R) for flow simulation and soil water estimation in the
three midwestern catchments. The soil moisture accounting

modified Sacramento model, documented by Bae and
Georgakakos [1994]. It is a conceptual spatially lumped
model suitable for application to headwater drainage basins. It
accepts mean-areal precipitation and mean-areal
evapotranspiration as input, and produces total channel inflow
as output. The flow components that contribute to the total
channel inflow are surface runoff in cases of excessive rainfall
rates, interflow through the upper soil layers, and groundwater
flow. The model subdivides the drainage basin into two zones:
an upper zone and a lower zone. The upper zone simulates
water stored in the upper soil layers which is available for
evapotranspiration, percolation, surface runoff, and interflow.
The lower zone simulates groundwater storage.

Snowmelt is an important source of channel flow for many
midwestern catchments in early spring. Moreover, frozen
ground effects on interflow and percolation are important
during winter. Reduced percolation rates due to frozen ground
play an important role on the lower soil state and on the
interseasonal memory of the system. We used the lumped,
conceptual, temperature-index, snow model developed by

< Anderson [1973] to simulate snow accumulation, ablation and

frozen ground effects. This model is currently used by the U.S.
National Weather Service for operational flow forecasting, and
was recently applied for climate studies of the Upper Des
Moines River basin by Bae and Georgakakos [1992].

The 3R differs from the Sacramento model by allowing for
just one soil compartment in each of the soil zones and no
distinction is made between free and tension-bound soil water
[e.g., Peck, 1976; Bae and Georgakakos, 1994]. The 3R does
use the same nonlinear percolation function to transfer water
from the upper to the lower zone. The governing equations of
the soil moisture accounting model and corresponding fluxes
(in millimeters per day) are given below, where dependence of
states and fluxes on time is implicit.

dx,

—L = P-SR-PC-ET - INT (2)

dt 1

4y PC - ET, - GW 3

a7 2T @
X1 .

SR= Pl — @)
Xl

Table 2. Statistics of Rain Gauge and Synthetic Satellite Rainfall for May-September of 1965-1988

Basin Average Average Standard Standard Satellite and Number of Number of
Rain Gauge, Satellite Deviation Deviation Rain Gauge Rainy Days- Rainy Days-
mm d! mm d! Rain Gauge, Satellite, Cross Rain Gauge, Satellite,
mm d! mm d! Correlation days mo™! days mo’!
Boone 3.46 2.39 7.61 4.53 0.87 18.0 9.8
West Fork 2.94 2.25 6.26 4.02 0.49 16.6 9.2
Des Moines 3.11 2.99 5.76 4.58 0.67 21.0 11.2
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Figure 1. Rain gauge and satellite rainfall pentad

climatologies (1965-1988) for (a) Boone, (b) West Fork and
(¢c) Des Moines. The lines with symbols correspond to
satellite rainfall average and standard deviation for May-
September (pentads 24-56).

Xl
ET, = PET| — ®)
X7
x| x
_ 0 _ 42 A1
PC = CprcCaXy |1+ C3(l Xg] [Xlo] 6)
INT = CppsC,X, O
x5 "
ET, = (PET - En)[i] ®)
XO
2
GW =CyX> 9)

in which X/ is upper zone water capacity (millimeter), P is
precipitation corrected with snow accumulation/snowmelt, SR
is surface runoff, ET, is evapotranspiration from upper soil,
INT is interflow, PC is percolation, X3 is lower zone water
capacity (millimeter), ET, is transpiration from lower soil, GW
is groundwater flow, m, is runoff exponent, C, is interflow
recession coefficient (per day), C, is coefficient in the
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percolation function, C; baseflow recession coefficient (per
day), m, is exponent in the percolation function, ms is
exponent in the function for transpiration from lower soil, and
Crre 1s frozen ground coefficient.

Another parameter [ arises from baseflow, and is related to
the fraction of groundwater flow that contributes to channel
baseflow (BF),

BF = (L)GW + INT (10)
1+p

A kinematic channel routing model is utilized to time
distribute the channel inflows produced by the hydrologic
component of 3R. A cascade of two conceptual reservoirs was
used to simulate the water flow of a natural stream network.
This model is based on the formulation originally proposed by
Mein et al. [1974] and brought to a state-space form by
Georgakakos and Bras [1982]. The channel routing model
contains two parameters that define the relationship between
the storage and the outflow of each of the conceptual
reservoirs. We assumed that the reservoirs are linear.
Therefore, the routing model requires the calibration of just
one parameter (o). It is noted that the relationship implies a
one-to-one correspondence between discharge and stage which
is a characteristic of kinematic channel routing methods. The
kinematic routing equations are given below,

as,
= - (SR + BF) - oS, (11)
ds,
T oS, — oS, (12)

in which S is conceptual reservoir storage (millimeters), o is
routing coefficient (per day), and dependence of states and
fluxes on ¢ is implied. Equations (11) and (12) were integrated
numerically with an adaptive-stepsize, fourth-order Runge-
Kutta procedure (maximum stepsize was 5 hours).

The parameters of the snow model were calibrated for the
Upper Des Moines River basin by Bae and Georgakakos
[1992] for a modified version of the Sacramento model and
were assumed to be adequate for 3R. The coefficient Cprpg;
depends on temperature indices and snow model parameters
[Anderson and Neuman, 1984]. Therefore, 3R requires the
calibration of ten parameters with daily series of mean-areal
precipitation, potential  evapotranspiration [Bae and
Georgakakos, 1992], minimum and maximum temperature and
streamflow. The percolation exponent (m;) and the lower soil
transpiration exponent (m3) were reported as 1.8 and 1.0,
respectively, by Bae and Georgakakos [1994]. An automatic
procedure to find the optimal set of the remaining eight
parameter values was used. We applied the Downhill Simplex
Method [e.g., Press et al., 1986] for estimating both the soil
accounting and routing model parameters. This method has
been extensively used for calibrating conceptual hydrologic
models [e.g., Bae and Georgakakos, 1994; Duan et al., 1992;

Table 3. Ratio of Satellite and Rain Gauge Rainfall to the
Threshold P

Basin P1=0.0, Pz=1.0, P1=2.0, Pg=2.5,
mm d’! mmd’! mm d’! mm d!
Boone 0.80 0.73 0.71 0.69
West Fork 1.35 0.96 0.81 0.76
Des Moines 1.59 1.16 1.02 0.96
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Table 4. Description and Optimal Parameter Sets for 3R Calibration with Mean-Areal Rain Gauge (RAI) and Satellite Rainfall

(SAT)
Parameter Description Boone West Fork Des Moines
RAI SAT RAI SAT RAI SAT
X?, mm Upper zone water capacity 119.0 127.3 195.2 212.2 118.1 168.9
Xg_ mm Lower zone water capacity 124.9 102.6 123.0 59.6 130.2 111.7
my Runoff exponent 3.20 1.78 2.67 2.03 1.46 1.49
Cy,d?! Interflow recession coefficient 0.00070 0.00004 0.00060 0.00060 0.00100 0.00010
C, Coefficient in the percolation function 134.1 121.2 245.1 203.8 132.16 90.78
Cs, d! Baseflow recession coefficient 0.0018 0.0004 0.0025 0.0013 0.0050 0.0044
[ 1/(1+m) Groundwater fraction that 1.99 1.51 3.26 0.00 4.03 3.04
contributes to baseflow
a,d? Coefficient of routing reservoirs 0.43 0.39 0.19 0.17 0.24 0.25
m, Exponent in the percolation function 1.8 1.8 1.8 1.8 1.8 1.8
ms Exponent in the function for transpiration 1.0 1.0 1.0 1.0 1.0 1.0
from lower soil
Sorooshian et al., 1993]. The calibration procedure consists soil water contents are characterized by interannual and

of running the model for an arbitrary set of parameters and
comparing daily simulated outflows to the measured ones.
Changes in parameter values are then effected to reduce an
index to be minimized. Both the average residual and mean
square error of daily predictions and observations are
minimized by fine-tuning the parameter set. Table 4 shows the
optimal parameter set for the three basins forced either with
mean-areal rain gauge or satellite rainfall. Table 5 shows the
corresponding daily streamflow statistics. The satellite
rainfall forcing was simulated for the period May-September
(with 60% of annual precipitation), whereas rain gauge forcing
was used for the remaining months. The 3R calibration used
10 years of daily precipitation, potential evapotranspiration
and streamflow for Boone (1979-1988), West Fork (1978-
1987), and Des Moines (1979-1988).

There are important implications on using satellite rainfall
forcing for calibrating the 3R parameters. Satellite rainfall
estimates are characterized by a negative bias and a smaller
variability than rain gauge mean-areal rainfall estimates. The
satellite rainfall bias affects the parameters associated with the
soil lower layers, by reducing the lower soil water capacity,
percolation from upper to lower soil, baseflow, and
groundwater replenishment. The smaller variability of
satellite rainfall increases the upper soil capacity, which is
one of the two parameters for runoff production.

The 3R model conserves streamflow volume and reproduces
both high- and low-flow events (from daily to decadal scales),
despite the negative bias in satellite rainfall. The cross
correlation of simulated and observed streamflow for rain
gauge data (p=0.88-0.90) was higher than the one for satellite
rainfall (p=0.77-0.85). Both the estimated upper and lower

Table 5. Summary of the 10-Year Daily Flow

seasonal variability, with the upper soil variation having
larger amplitude than the lower soil. Figures 2 and 3 depict the
10-year estimates of pentad climatologies of streamflow and
upper soil, obtained with rain gauge mean-areal precipitation
and satellite rainfall forcing, for Boone (West Fork results, not
shown, are similar to Boone) and Des Moines, respectively.
Figure 2a shows the pentad climatology of observed flows
and the standard deviation of streamflow residuals (model-
observed flow) for rain gauge model calibration and forcing,
and satellite rainfall calibration and forcing. The model

preserves the phase of the observed annual cycle of outflows

for both rain gauge and satellite data. The amplitude of the
first peak (March-April, pentads 12-24) is captured with both
rain gauge and satellite-rainfall data, whereas the second peak
(June-July, pentads 30-42) is underestimated with satellite
rainfall. The largest streamflow simulation error with satellite
data coincided with the period of heavy rains (June-July,
pentads 30-42), which are underpredicted by the satellite
estimation procedure. The streamflow errors with satellite
rainfall remain larger than the errors with rain gauge forcing in
autumn; since satellite rainfall is only imposed for May-
September, these errors are related to the antecedent soil water
conditions which were forced by satellite rainfall. Figure 2b
shows the pentad climatology of upper soil water content in
Boone for both rain gauge and satellite data. The
climatological phase, amplitude (50 mm) and interannual
variability of the upper soil water content was similar for both
rain gauge and satellite rainfall.

The drainage area of Des Moines is 6 times larger than the
Boone basin resulting in a more attenuated basin response to
rainfall forcing, as shown by the smoother streamflow pentad

10-year Boone West Fork Des Moines
Climatology OBS RAI SAT OBS RAI SAT OBS RAI SAT
Flow average 0.68 0.68 0.68 0.49 0.49 0.49 0.60 0.61 0.61
Flow standard deviation 1.15 1.15 0.89 0.73 0.67 0.59 0.78 0.77 0.72
Residual (mod-obs) average - 0.00 0.00 - 0.00 0.00 - 0.01 0.01
Residual standard deviation - 0.56 0.70 - 0.34 0.47 - 0.35 0.41
Cross correlation - 0.88 0.80 - 0.88 0.77 - 0.90 0.85

Ten-year daily flow (in millimeters per day) statistics for the three basins, in which OBS: stream gauge flow, RAI: 3R flow predicted with rain
gauge mean-areal precipitation, and SAT: 3R flow predicted with satellite rainfall.
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Figure 2. Streamflow prediction errors and soil water

estimates for Boone. (a) Observed streamflow climatology and
prediction errors. (b) Upper and lower soil climatology and
interannual variability. Soil water and streamflow prediction
errors were obtained for rain gauge-calibrated model forced
with rain gauge mean-areal precipitation and satellite-
calibrated model forced with satellite rainfall. Period with
satellite forcing: pentads 24-56.

climatology of Figure 3a. The use of satellite rainfall data
attenuates the streamflow peaks in midsummer (pentads 30-36)
and early fall (pentads 48-54), corresponding to the spikes of
the standard deviation of satellite rainfall residuals (model-
observation). The climatological distributions of streamflow
prediction errors with rain gauge and satellite data are similar,
except for the aforementioned spikes in midsummer and early
fall. The pentad climatology of upper soil water for Des
Moines, depicted in Figure 3b, is characterized by similar
phase and interannual variability for rain gauge and satellite
rainfall. However, satellite rainfall yields larger amplitude (75
mm) than rain gauge data (50 mm).

In this investigation we have selected a perturbation
analysis for quantifying the sensitivity of predicted
streamflow to the model parameters. The distinguishing
feature of rainfall runoff models is that a given parameter
usually affects predicted runoff for more than one event,
because the influence through time is transmitted by
antecedent soil water conditions. The perturbation method
consists in varying a specific parameter about its nominal
value, while all the other parameters are kept constant, and
tallying the associated error measure. The 3R flow simulation
sensitivities to the prescribed parameters were similar for both
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rain gauge and satellite rainfall forcing. Sensitivities of
predicted streamflow variability to the 10 model parameters
indicated that the surface runoff exponent (m;) and channel
routing coefficient (o) are the main source of model simulation
errors, whereas soil water capacity (upper and lower) and the
parameters of the percolation function yield errors that are 50 -
20% of the m; and o errors. The model streamflow simulations
vary weakly with changes in the interflow coefficient (C;) and
in the partitioning of groundwater flux into baseflow and
groundwater replenishment ().

5. Streamflow Simulation

The sensitivity of the model to the mean-areal precipitation
input focused on two issues: errors in forcing a rain gauge-
calibrated model with satellite rainfall, and errors associated
with the drainage basin scale. The former issue arises when
models calibrated with historical rain gauge data are used in
real-time prediction with satellite input when no automated
rain gauge records are available.  The latter issue is
fundamental to the inference of soil water from remotely
sensed data.
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Figure 3. Streamflow prediction errors and soil water
estimates for Des Moines. (a) Observed streamflow

climatology and prediction errors. (b) Upper and lower soil
climatology and interannual variability.  Soil water and
streamflow prediction errors were obtained for rain gauge-
calibrated model forced with rain gauge mean-areal
precipitation and = satellite-calibrated model forced with
satellite rainfall. Period with satellite forcing: pentads 24-56.
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Table 6. Summary of the 10-Year Daily Flow
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10-year Boone West Fork Des Moines
Climatology RAI- RAI RAI-SAT SAT-SAT RAI- RAI RAI-SAT SAT-SAT RAI- RAI RAI-SAT SAT-SAT
Ratio of residual average g -0.36 0.00 0.00 -0.39 0.00 0.02 -0.08 0.01
and long-term flow
average
Ratio of residual and long 0.48 0.65 0.61 0.46 0.69 0.64 0.45 0.54 0.53
term flow standard
deviations
Daily cross correlation 0.88 0.76 0.80 0.88 0.73 0.77 0.90 0.84 0.85

Ten-year flow (in millimeters per day) statistics for the three basins, in which RAI-RAIL: 3R calibrated and forced with rain gauge mean-areal
precipitation; RAI-SAT: 3R calibrated with rain gauge data and forced with satellite rainfall; and SAT-SAT: 3R calibrated and forced with satellite

rainfall.

Table 6 tallies the streamflow bias, variability, and cross
correlation with observed flow for three conditions:
calibrated and forced with rain gauge precipitation (RAI-RAI),
(2) 3R calibrated with rain gauge data and forced with satellite
rainfall (RAI-SAT), and (3) 3R calibrated and forced with
satellite rainfall (SAT-SAT).

The model parameter calibration is designed to produce
unbiased ensembles of simulated streamflow with minimum
least-square variability. Therefore, the simulated streamflow
bias is negligible for RAI-RAI and SAT-SAT. However,
normalized streamflow error variability for SAT-SAT was 8-
18% larger than for RAI-RAI. Forcing the rain gauge-
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(1) 3R~

calibrated model with satellite rainfall underestimates
streamflow significantly. The 31% and 23% satellite rainfall
underestimation yields a 36% and 39% decrease on simulated
streamflow for Boone and West Fork, respectively; whereas
the 4% negative bias in satellite rainfall causes a 8%
streamflow underestimation for the larger Des Moines basin.
The error (normalized standard deviation of residuals between
simulated and observed streamflow) is the highest for the RAI-
SAT case, exceeding 60% of the observed  streamflow
variability for Boone and West Fork.

The pentad climatologies of streamflow errors are shown in
Figures 4 and 5, for Boone and Des Moines, respectively. The
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Figure 4. (a-c) Pentad climatologies of streamflow bias and (d-f) errors for Boone, in which RAI-RAL 3R
calibrated and forced with rain gauge mean-areal precipitation; RAI-SAT: 3R calibrated with rain gauge data and
forced with satellite rainfall; and SAT-SAT: 3R calibrated and forced with satellite rainfall. Period with satellite

forcing: pentads 24-56.
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Figure S. (a-c) Pentad climatologies of streamflow bias and (d-f) errors for Des Moines, in which RAI-RAI:
3R calibrated and forced with rain gauge mean-areal precipitation; RAI-SAT: 3R calibrated with rain gauge data

and forced with satellite rainfall; and SAT-SAT: 3R calibrated and forced with satellite rainfall.

satellite forcing: pentads 24-56.

error distributions for Boone and West Fork are similar.
Therefore, Boone's results are considered to be representative
of smaller scales (~2,000-3,000 kmz), and Des Moines' results
correspond to larger scales (~14,000 km?), hereinafter. Figure
4a-4c depicts the bias of streamflow estimates for the different
combinations of model parameters and precipitation input.
Streamflow is underestimated during most of the year for RAI-
SAT (Figure 4b), with the largest bias in midsummer, whereas
the negative bias is substantially reduced when satellite input
is given to a model calibrated with satellite rainfall. The
streamflow error variability shown in Figure 4e-4f, indicates
that prediction errors are of the same order magnitude of
streamflow interannual variability during summer and fall for
RAI-SAT and SAT-SAT.

Figure 5a-5¢ indicates that the Des Moines'
streamflow bias is of the same order of magnitude for the three
combinations of model calibration and precipitation input,
with satellite rainfall consistently underestimating streamflow
in midsummer. The streamflow root-mean-square error is of the
same order of magnitude as the streamflow interannual
variability in mid summer and early fall (Figure 5e-5f) for the
two models forced with satellite rainfall.

modeled

6. Soil Water Estimates and Scaling

Soil water is depth-integrated soil moisture averaged over a
certain area. The depth of integration encompasses soil

Period with

moisture available for evapotranspiration, surface runoff, and
baseflow. Soil water behavior on scales of interest in this
study remains largely unknown, since there are no direct
measurements (the national programs for soil
measurement were reported by Georgakakos and Baumer,
[1996]). Huang et al. [1996] estimated monthly soil water for
all the 344 U.S. climate divisions using a water balance model
with monthly precipitation and monthly mean temperature
given as input. Model-estimated soil water for the Upper Des
Moines River basin was discussed by Georgakakos and Bae
[1994] based on 37-year series of daily rain gauge
precipitation and evapotranspiration. It was reported that the
range of the annual cycle of monthly averaged soil water for
Boone, West Fork, and Des Moines ranged from 50 to 70 mm,
and it was of the same magnitude as the interannual variability
of monthly soil water. The lower and upper soil water were
out-of-phase in early spring, when the upper soil volume
peaks due to rain and snowmelt, and reduced percolation to the
lower layers, suggesting an extended hydrologic response to
frozen ground in winter [Georgakakos et al., 1995a). Cayan
and Georgakakos [1995] investigated the spatial patterns and
scales of monthly seasonal hydrologic-meteorologic
anomalies associated with model-estimated soil water
fluctuations for Boone, and suggested that basin average soil
water extremes are meteorologically important to characterize
the land-air connection on regional scales.

moisture
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In this study, we reproduced the soil water features described
by Georgakakos and Bae [1994] for the period of record 1949-
1988, and expanded the analysis to identify the effect of
satellite rainfall on soil water. Figures 6 and 7 show the
pentad soil water climatology and standard deviation for
Boone (smaller scale) and Des Moines (larger scale),
respectively, for the model and forcing combinations RAI-
RAI, RAI-SAT, and SAT-SAT. The climatological cycle of
lower soil water is bimodal, with a first peak in early summer
(pentad 30) and a second peak in early winter (pentads 66-72),
and the phase does not change with satellite input. Soil water
estimates varied significantly with respect to model
calibration; that is, the amplitude of the soil water cycles was
substantially attenuated when the satellite-calibrated model is
forced with satellite rainfall, whereas the rain gauge calibrated
model yielded almost identical upper and lower soil water
cycles for either rain gauge or satellite rainfall forcing.
Figures 6d-6f and 7d-7f indicate that the interannual
variabilities of upper and lower soil water are of the same order
of magnitude, except for Des Moines obtained with satellite-
calibrated model forced by satellite rainfall. The interannual
variability of pentad soil water is of the order of 20-30 mm,
whereas the amplitude of the annual cycle ranges from 60-70
mm for upper and 30-50 mm for lower soil water pentads. It is
noted that the frequency distribution of May-September upper
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soil water pentads for RAI-RAI favored dry conditions for
Boone, whereas moderately wet conditions prevailed for SAT-
SAT (not shown). The frequency distribution of RAI-SAT May-
September upper soil water, with a total of 320 points,
favored very dry conditions. Differences in the upper soil
water frequency distribution for the three combinations of
model and input for Des Moines (larger scale) were less
significant than for Boone and West Fork (smaller scale).
Therefore, model calibration and forcing may substantially
affect the estimates of extreme soil water states.

The parametric scaling properties of estimated soil water for
positive and negative anomalies were reported by
Georgakakos and Bae [1994] for Boone.  Guetter and
Georgakakos [1996] proposed the nonparametric scale
measure of spatiotemporal variability, v,, named Frequency
Scaling Ratio. It is the probability that, over a given spatial
scale, a certain soil water anomaly (positive or negative) will
exceed in magnitude a threshold expressed in quantiles of the
observed frequency distribution of anomalies. The behavior of
v, computed from estimated soil water data may be compared to
its expected behavior under purely random conditions, which
provides the significance level for this analysis. The measure
V,p is given by the ratio
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Figure 6. (a-c) Pentad climatologies of upper and lower soil water and (d-f) corresponding standard deviations
for Boone, in which RAI-RAI: 3R calibrated and forced with rain gauge mean-areal precipitation; RAI-SAT: 3R
calibrated with rain gauge data and forced with satellite rainfall; and SAT-SAT: 3R calibrated and forced with
satellite rainfall. Period with satellite forcing: pentads 24-56.
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Figure 7. (a-c) Pentad climatologies of upper and lower soil water and (d-f) corresponding standard deviations
for Des Moines, in which RAI-RAIL 3R calibrated and forced with rain gauge mean-areal precipitation; RAI-
SAT: 3R calibrated with rain gauge data and forced with satellite rainfall; and SAT-SAT: 3R calibrated and forced
with satellite rainfall. Period with satellite forcing: pentads 24-56.

with F; representing the number of time steps when the
anomalies in both regions A and B exceed the set threshold ¢
(in which ¢q is a nonparametric anomaly, 0<¢<1), and F,
representing the number of times that either A or B will exceed
the threshold gq. Following  standard probabilistic
nomenclature, the symbol "M" signifies "intersection” of
events and the symbol "U" signifies "union" of events. Also,
Fy and F, may be interpreted as frequencies if they are
normalized by the total number of time steps.

For two regions (an embedded and an embedding region)
with independent random process V,(4-0.5)=0.33 corresponds
to pure chance and, for independent processes, the values of
Vp(g>05) decrease from that value [see Guetter and
Georgakakos, 1996]. The condition V,(4-0.5)=0.33 implies
that the probability that positive (or negative) anomalies of
any magnitude will occupy both regions by chance is 0.33.
Greater probabilities than that imply higher frequency of
occurrence of large anomalies that cover both regions.

Figure 8 depicts the scaling function v, applied to upper
soil water, for the pair of larger embedding and smaller
embedded regions (Boone and Des Moines); Figure 8a shows
the RAI-RAI case, whereas Figures 8b and 8c show the RAI-
SAT and SAT-SAT combinations, respectively. The threshold
(¢") indicated in the plots is such that, for positive anomalies,
q=0.5+¢', and for negative anomalies, g=0.5-¢'. The threshold

q'=0 corresponds to median soil water storage, whereas ¢'=0.5
corresponds to extreme wet (dry) conditions for positive
(negative) anomalies. In the three plots we also show by
dashed lines the 5% (lower) and 95% (upper) quantiles of the
sampling error distribution. The bounds were obtained from
Monte Carlo simulation using a lag-1 Markov model. Figure
8a-8c indicates that positive and negative anomalies scale
similarly, within the 0.2<¢<0.8 range of soil water anomaly
distribution.  The probability of concurrent soil water
conditions on larger and smaller scales varies between 0.6 and
0.8, in the 0.2<¢<0.8 anomaly range; whereas for 20%
extreme quantiles, extreme positive anomalies occur with
lower frequency than negative ones. This is likely due to the
fact that extreme positive soil water anomalies are forced by
smaller-scale intense precipitation events.

Upper soil water scaling for the RAI-SAT case (Figure 8b)
was similar to the RAI-RAI (Figure 8a) case, with a
discontinuity at the 20% extreme quantile of the distribution
(¢'=0.3). However, the scaling for SAT-SAT (Figure 8c)
suggests stronger spatial association for positive and negative
anomalies, with a discontinuity at the 10% extreme quantile of
soil water distribution. The bias in the satellite rainfall
synthetic series caused an increase in the upper soil capacity,
which in turn increases the upper soil water autocorrelation,
and the probability that soil water anomalies remain
concurrently associated on large and small-scales.
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Figure 8. Frequency scaling ratio (FSR) as a function of soil
water frequency threshold (q') for Boone and Des Moines. The
threshold ¢' corresponds to (g-0.5) and (¢+0.5) for negative and
positive anomalies, respectively, where g is a certain quantile
of the upper soil water distribution. (a) RAI-RAI: 3R calibrated
and forced with rain gauge mean-areal precipitation; (b) RAI-
SAT: 3R calibrated with rain gauge data and forced with
satellite rainfall; and (c) SAT-SAT: 3R calibrated and forced
with satellite rainfall. Period with satellite forcing: pentads
24-56.

7. Conclusions and Recommendations

A 180-day series of satellite rainfall estimates for a 70,000
km? area in the midwestern United States wds used to identify
the rain gauge satellite rainfall error structure, and build a 10-
year synthetic series of daily satellite rainfall for climate
studies. Satellite rainfall was estimated for the May-September
period, in which satellite data was available. The constructed
10-year series of satellite rainfall used rain gauge mean-areal
precipitation for the October-April period. Rain gauge and
satellite rainfall were used to calibrate a hydrologic-hydraulic
model (3R) that reliably simulates daily streamflow, and
produces soil water estimates.

The principal conclusions of the study are as follows:

1. T'sonis et al. [this issue] derived satellite rainfall from a
limited sample of infrared and visible data for the period May-
September.

We used these rainfall estimates to construct
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synthetic satellite rainfall for a 10-year period. The small
sample size of satellite observations and scale effects cause the
synthetic time series of satellite rainfall to underpredict the
long-term climatology and interannual variability of rain
gauge mean-areal precipitation. The synthetic satellite
rainfall underpredicted mean-areal precipitation by 25 to 30%
for Boone (2,000 km?) and West Fork (3,500 km?2), and by 4%
for Des Moines (14,000 km?2). The 10-year standard deviation
of pentad reconstructed satellite rainfall varied from 60 to 65%
(Boone and West Fork) to 80% (Des Moines) of the
corresponding rain gauge data.

2. Flow simulation with a rainfall-runoff-routing
hydrologic-hydraulic model forced with satellite rainfall is
affected differently on different spatial scales. Using satellite
data with rain gauge calibrated hydrologic models generates
the following problems: (1) Simulated streamflow is biased,
with flow being underpredicted by 36 to 39% for Boone and
West Fork, and 8% for Des Moines; (2) the standard deviation
of flow errors is 64 to 65% of observed flow interannual
variability for the smaller basins, and is 54% for Des Moines;
(3) the simulated streamflow error variance is of the same order
of magnitude as the variance of streamflow due to interannual
variance during summer and fall for the smaller basins, and
during fall for the larger Des Moines basin.

3. There is no long-term streamflow bias for simulations
with a satellite-calibrated model forced with satellite rainfall.
However, the magnitude of the standard deviation of flow
errors is of the same order of the ones obtained with rain
gauge-calibrated models forced with satellite data (53 to 69%
of streamflow interannual variability); the magnitude of

streamflow errors varies with scale, with larger streamflow

prediction errors found for smaller basins (Boone and West
Fork).

4. Soil water climatology is substantially affected by the
rainfall used for the hydrologic model calibration. The set of
parameters obtained for the satellite-calibrated model yields
smaller amplitude of the lower soil water cycle, whereas the
amplitude of the upper cycle also varies with scale. The
amplitude of upper soil water pentad climatology increased
with satellite data (used in calibration and forcing) for larger
basins (Des Moines).

5. The spatiotemporal scaling of soil water extremes is
significantly affected by the rainfall forcing, indicating
rainfall's important role for soil water, as suggested by Cayan
and Georgakakos [1995] and Guetter and Georgakakos [1996].
The Frequency Scaling Ratio function, describing the
spatiotemporal scaling of soil water anomalies, showed scale
decreasing as the anomaly strength increases. The probability
of concurrent normal soil water conditions (median) for larger
and smaller basins is 80%, regardless whether rain gauge or
satellite rainfall is used. For moderate soil water anomalies
(within the middle 60% of the frequency distribution), the
likelihood of occurrence of positive (wetter) and negative
(drier) anomalies is similar. For extreme soil water anomalies
(extreme 20% quantiles), the likelihood of large negative
anomalies is higher than positive anomalies of the same
magnitude. Spatiotemporal scaling of positive soil water
anomalies is affected by satellite rainfall input. Scales of
extreme positive anomalies (wetter) are likely to increase
when satellite rainfall is used, approaching the scales of
negative anomalies.

Perhaps the most important recommendation 1is to
encourage the availability of a significant continuous record of
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satellite data to support studies such the one reported herein.
In such a way that possible biases and scale effects of satellite
rainfall are resolved with actual satellite observations rather
than with an error structure derived from a small sample. Until
that time, studies such as the one reported herein are the only
means of assessing the effects of satellite rainfall input to
hydrologic models. Future research should address (1) the issue
of reducing the impact of satellite errors in simulation and
prediction by using streamflow measurements and state
estimators to update soil water estimates in real time, and (2)
coalescing satellite rainfall estimates with sparse rain gauge
data to improve mean-areal rainfall estimates [Green and

Koren, 1995].
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