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implicity and regularity are associated with predictabil-

ity. For example, because the orbit of Earth is simple and

regular we can always predict when astronomical win-
ter will come. On the other hand, complexity and irregularity
are almost synonymous with unpredictability. The atmo-
sphere, for example, being so complex and irregular is rather
unpredictable.

Those who try to explain the world we live in have always
hoped that within the complexity and irregularity observed
in nature, simplicity would be found behind everything, and
that ultimately unpredictable events will become predictable.
The fact that complexity and irregularity exist in nature is ob-
vious; we only need to look around us to realize that practi-
cally everythingis random in appearance. Or is it? Clouds, like
many other structures in nature come in an infinite number
of shapes. Every cloud is different, yet everyone can recog-
nize a cloud. Clouds must then possess unique features that
distinguish them from other structures. The question remains:
is the irregularity of things like clouds completely random, or
is there some order underlying this irregularity?

Over the past two decades physicists, biologists, mathema-
ticians, and scientists from many other disciplines have de-
veloped the science of dynamical systems—chaos, fractals,
cellular automata—in order to represent and study complex-
ity in nature. In this tutorial we consider all the evidence and
understanding that has been gained from the use of these new
tools in providing original insights about physical processes.

FRACTALS

Fractal sets, unlike Euclidean objects, possess no characteris-
tic sizes or length scales [1]. They display detailed structure
on all length scales, so that when magnified each small por-
tion reproduces a large portion of the set. This property is
called self-similarity or scaling (scale invariance) and is closely
connected to the intuitive notion of dimension. Mathemati-
cally, scaling is expressed by a power law of the form C(r)e< 1,

where rrepresents the scale, C(r) is a statistic at a scale r, and
A is related linearly to the fractal dimension, D, which takes
on noninteger values. Fractals can be exact or random. Exact
fractals are produced by recursive algorithms for example, the
Koch snowflake shown in Figure 1 or the famed Sierpinski
carpet. Exact fractals possess exact self-similarity. Random
fractals are products of recursive algorithms plus noise, and
do not possess exact self-similarity. In this case, when a small
part is magnified it does not reproduce exactly a larger part,
but reproduces the statistical properties of a larger part. In
this case ( C(r) ) e< r* where the brackets indicate averages. In
both cases scaling extends to infinitely small scales. The above
formulation provides a general way to calculate fractal dimen-
sions. Define the statistic Cand determine its value at various
scales, r. Plot the logarithm of C(r) versus the logarithm of r. If
the resulting curve is linear over a wide range of scales (scal-
ing), then the slope of that linear part is an estimate of the
fractal dimension. In the case of the Koch snowflake, C(r) can
be the length of the boundary measured with a yardstick of
length r. Alternatively, C(r) can be the number of squares of
size rneeded to cover the boundary (box-counting).

In cases where the scaling is not uniform (i.e., when shapes
are statistically invariant under transformations that scale dif-
ferent coordinates by different amounts), then we do not have
self-similarity but self-affinity. As in the case of self-similarity,
self-affinity can be exact or statistical. Statistical self-affinity is
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Fractals [1] are sets that are not topological. For to-
pological sets the Hausdorff-Besicovitch dimension
is an integer (0 for points, 1 for any curve, 2 for sur-
faces etc.). For fractal sets the Hausdorff-Besicovitch
dimension is not an integer but is a real number.
Because of that fractals have properties that are be-
yond topology. The Koch curve or snowflake begins
with an equilateral triangle with sides of length one;
then at the middle of each side a new equilateral tri-
angle with sides of length one-third is added; and so
on. The length of the constructed boundary is 3x4/
3x4/3x4/3x........ = o, However, that boundary occu-
pies no area at all and it encloses a finite area which
is smaller than the area of the circle drawn around
the original equilateral triangle. The Hausdorff-Besi-
covitch dimension of the boundary is 1.2618 (higher
than the topological dimension of a curve). Often the
Hausdorff-Besicovitch dimension is referred to as the
fractal dimension. Such mathematical curiosities, ab-
stract as they seem, have found a place in the study
of nonlinear dynamical systems.

often the case with noisy time
series. Mathematically this is ex-
pressed by Ax(AAt) = MAx(AL)

for all A > 0 where x(t) is the time
series and the symbol =“denotes
identity in statistical distribu-
tions. This relation dictates that
the distribution of increments of
x over some time scale AAf is
identical to the distribution of
increments of x over a lag equal
to At multiplied by A. Therefore,
if time is magnified by a factor
A, x is magnified by a factor
M (0 < H < 1). The quantity H
characterizes self-affinity in a
fashion similar to that by which
D measures self-similarity. The
value H = 0.5 corresponds to the
trace of a Brownian motion (see

Figure 2), whereas any value
H # 0.5 defines a fractional
Brownian motion (fBm) having
infinite long-run correlations
(either positive if H > 0.5 or
negative if H < 0.5). Note that
Brownian motions exhibit spec-
tra of the form S(f)e<f “and that
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The trace of a pure Brownian motion. The amplitude indicates the distance from the origin as a function of the
time step.

their trails have a dimension
08 1 D =1/H with a = 2H + 1. These
propertieslie at the heart of com-
puter methods for the generation
of random fractal sets of any de-
| sired dimension D [2].
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Strictly speaking, a

set’s defining relation is

given by its characteristic
| function I(P); which can
| take two values: I(P) = 1
‘ (black) ifa point Pbelongs
to the set or I(P) = 0
(white) if it does not.
Natural phenomena can
be hardly characterized
this way as they demand
mathematical objects
that allow for the idea ofa
grey scale. A good ex-

ample is a rain field,
which has an intensity
distribution of rainfall
rather than being defined
as rain—no rain. These
objects are called mea-
sures. The idea of self-

similarity is readily ex-
tended from sets to

measures, in which case
these measures are called
maultifractals (they can
also be either exact or sta-
tistical). The geometric

A rain field delineated at increasing rainfall rate threshold. As the threshold is raised less and less area remains. At each
threshold the rain area may exhibit certain fractal properties. In this case the field will be associated with a series of
dimensionalities and it is called a multifractal field.

background on which a
given physical quantity is distributed can be an ordinary plane,
the surface of a sphere, or even a fractal set. Each subset of a
measure may exhibit its own fractal dimension. Hence the
series of dimensionalities. Figure 3 is such an example. It
shows a two-dimensional cross section of a rainfall field, 1(r),
with a certain intensity distribution (the darker the shading
the higher the rainfall rate). For a given intensity, R, the
rainfield is defined from the set of points such that I(r) > R. By
increasing R the field is becoming sparser and sparser and (if
scaling exists) we obtain a decreasing dimension function D(R)
obeying the power law C(1; R) o r'®. Such decreasing func-
tion is shown in Figure 4 which for rain shows the derived
power law (scaling) at different intensity (dB) thresholds. Note
that when dealing with natural systems caution must be ex-
ercised in determining the existence and range of scaling. (For

more details the reader is advised to consult reference [12].)

CHAOS
Observing the spectra of turbulent motion, one realizes that
motion exists at all frequencies with no preferred frequencies.
This broad-band structure of the spectrum indicates that the
motion is nonperiodic (or, strictly speaking, periodic with an
infinite period). Could such a motion be due to a simple non-
linear system? Let us assume that the answer to this question
Lis yes. Then the trajectory in the system’s phase space would

be nonperiodic and would never cross itself (because once
the system returns to a state it was in some time in the past, it
must then follow the same path; hence, it is periodic). Thus,
the trajectory should be of infinite length, but confined to the
finite area defined by its phase space. This can be the case
only if the attractor is a fractal set (see Figure 1).

he first such system was discovered in 1963 by Edward

Lorenz [3]. This system gives an approximate descrip-

tion of a fluid layer heated from below. The fluid at the
bottom gets warmer and rises, creating convection. For a
choice of the constants that correspond to sufficient heating,
convection may happen in an irregular and turbulent man-
ner. The precise form of the Lorenz system is

dx/dt=—-ax + ay,
dyldt=-xz+bx-y,
dz/dt=xy-cz,

where x is proportional to the intensity of the convective mo-
tion, yis proportional to the horizontal temperature variation,
z is proportional to the vertical temperature variation, and
a, b, c are constants. Figure 5 depicts the path of a trajectory
of this system in phase space. Clearly, the Lorenz attractor does
notlook like a limit cycle (periodic) or a torus (quasi-periodic).

© 1996 John Wiley & Sons, Inc.
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The trajectory is deterministic but it is strictly nonperiodic as
itirregularly loops to the left and then to the right. Extensive
studies have shown that this attractor, as well as other
such attractors, possesses a fine structure that is made up of
infinitely nested layers (infinite area) occupying zero volume.
One may think of it as a Cantor set in higher dimensions. Its
fractal (Hausdorff-Besicovitch) dimension has been estimated
about to be about 2.06 [4-7].

The fractal nature of an attractor does not only imply
nonperiodic orbits. It also causes nearby trajectories to di-
verge. As with all attractors, trajectories initiated from differ-
ent initial conditions soon reach the attracting set, but two
nearby trajectories do not stay close. They soon diverge and
follow totally different paths on the attractor. This divergence
is measured by the positive Lyapunov exponents of the sys-
tem. Attractors with positive Lyapunov exponent(s) are called
chaotic attractors. Lyapunov exponents give the rate at which
nearby trajectories diverge (positive exponents) or converge
(negative exponents). For example, the Lorenz system has one
positive Lyapunov exponent equal to 2.16 bits/s. This is inter-

preted as follows: if an initial point is specified with an accu-
racy of one part per million (20 bits) its future behavior could
not be predicted after about 9 s [20 bits/(2.16 bits/s)] corre-
sponding to about 20 orbits.

ince the system is deterministic, if one knows the initial

condition exactly, it is possible to follow the correspond-

ing trajectory and basically predict the evolution of the
system forever. Thus, determinism exists in chaotic systems.
The problem is that we almost never have perfect knowledge
of the initial condition. There will always be some deviation
of the measured from the actual initial condition. They may
be very close to each other but they will not be the same. Thus,
even though we may know the laws that govern the evolution
of the system exactly, the state of the system at a later time
can be totally different from the one predicted by the equa-
tions due to the underlying structure of the attractor. Initial
errors are amplified and predictability is limited. Furthermore,
even if we know the initial condition perfectly, exact compu-
tation for long times requires computing values with more and
more digits which soon be-
comes practically impossible.
Thus, at some point truncation
or round-off error takes place,

log N(L)

which introduces a small error
that will grow and again lead to
unpredictability. Nevertheless,
the theory of nonlinear dynami-
cal systems and chaos does pro-
vide a new framework to explain
the “random looking” character
of many observables and to de-
fine the limits of predictability of
natural systems.

SUMMARY #1

Our universe is definitely far
more complicated than the
Lorenz system or the other
“standard” chaotic systems re-
ported in the literature. In fact,
our universe is an infinitely di-
mensional system, because it is
made up of a practically infinite

number of particles not just one

log L

Applying box-counting by considering the rainfield in Figure 3 at different intensities (dB) we obtain the data
shown here. In a log-log plot the data suggest scaling which is estimated by a linear regression in the range of
scales from 0 <logr<1.8. The resulted straight lines have slopes that decreases in magnitude as the threshold
increases. This indicates that the rainfield may be a multifractal field.

T
0] 0.4 0.8 1.2

T as in systems described by a set
1.6 of ordinary differential equa-
tions. In a sense it is naive to
imagine that our universe is de-
scribed by a grand attractor let
alone a low-dimensional
attractor. If that were the case,
then all observables represent-
ing different processes should
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have the same dimension,
which is not suggested from the
myriad of reported dimensions.
It is possible to make a case that
a rather “isolated” subsystem
(such as the solar system) may
be sufficiently decoupled from
its environment so that it obeys
its own dynamics. In such cases
low-dimensional chaos couldbe |
a possibility, with each sub- |
system having its own attractor.
Such subsystems, however, may
berare. That is why most low-di-
mension estimates reported in
the literature do not stand on
very firm ground.

In 1989 Tsonis and Elsner [8]
suggested that if low-dimen-
sional attractors exist they are
associated with subsystems
each operating at different
space/time scales. In his study
ondimension estimates, Lorenz
[9] concurs with the suggestion
of Tsonis and Elsner [8]. Note
that this suggestion does not
imply only weakly-coupled sub-

systems. Strongly-coupled sub-
systems may very well exist. If
so, communication contami- |
nates and may well destroy low-
dimensional chaos. Unfortu-

A trajectory of the Lorenz system with a = 10, b = 28, and ¢ = 8/3.

nately, it is not known a priori

that a particular observable represents a weakly-coupled sub-
system, and, thus, often the procedure and interpretation of
the resulting calculation of the attractor dimension is not valid.
Therefore, we should not be surprised if a low-dimensional
system exists somewhere in nature. But we should not expect
low-dimensional chaos everywhere. After all, chaos does not
explain the spontaneity and self-organization observed in
many natural systems. Self-organization refers to phenom-
ena on a macroscopic scale—a scale often much larger than
that of the fundamental interactions—in the form of spatial
patterns or temporal rhythms. Examples of self-organization
are the Benard convection, hurricanes, developing embryos,
and evolutionary ecosystems.

long the same lines, a quick look around us immedi-
ately reveals that exact fractals (Figure 1) like exact cubes
or exact spheres do not exist in nature. Random fractals,
on the other hand, may very well exist. Computer generated
random fractals (from algorithms or physically-based mod-
els) resemble natural objects quite well [1, 2, 10, 11]. However,

for reasons similar to those discussed previously, fractals and
scaling may not be as abundant as claimed, and their exist-
ence may be restricted to a certain range of scales depending
on the “connectivity” of the generating physical system to
other systems [12]. As such, fractals, chaos, and scaling be-
come significant if we know exactly over what range of scales
they apply, as they can then reveal important connections to
dynamics or the rules dictating the different scales.

e thus arrive at the inevitable conclusion that low-

dimensional chaos may be limited and that ran-

domness is an integral part of processes in nature.
An obvious question then arises: can randomness be linked
to self-organization? An answer to this question is provided
by the theory of cellular automata.

CELLULAR AUTOMATA

The complexity observed in fractal sets and in chaotic time
series from dynamical systems with a few equations shows
that simple systems can generate very complex behavior.

© 1996 John Wiley & Sons, Inc.
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The evolution of a one-dimensional cellular automaton obeying the rule given by equation (1). Sites with
values one are black. Sites with value zero are left white. As the time step increases the structure keeps on

In a series of papers [13-16], Wolfram proposed that the
origin of such complexity could be investigated through
simple mathematical models which are termed cellular
automata. Models based on cellular automata provide an
alternative to differential equations (ordinary or partial)
and iterative mappings. They involve discrete coordinates
and variables,as well discrete time steps. They can exhibit
complex behavior analogous to that found in differential
equations. But because they are extremely simple they offer
the possibility of a detailed and complete investigation of
complexity.

In its simplest form, a one-dimensional cellular automata
consists of a line of sites or cells with each site carrying the
value of 0 or 1. The value a,of site i at time t is determined by
asimple rule that depends on the previous values of sites in a
neighborhood of site i. Explicitly, the rule fgiving the value at
site 7 at time ¢ can be written as

a,(t):f[a, (t=1),a, (=

i-r+1

Dy @, (t=1)].
Even for a neighborhood size of radius r = 1, very complex
behavior can be obtained.

For example, consider the cellular automata for which the
value at each site is updated according to the rule

i+l

a(n=1, if Y a;t-1=1,
J=i-1
J#

a,(t) =0, otherwise. (1)

This corresponds to a neighborhood of size r = 1. Starting

growing (from Wolfram 1994).

28

with the simple initial state where only one fixed site is
allowed to grow

the emerging structure is given in Figure 6. This structure is
an exact self-similar (fractal) structure that grows indefinitely,
having a dimension of about 1.59 [14]. It is found that pat-
terns generated from such simple fixed initial configurations
either die out after some time steps or they evolve to a fixed
size or they grow indefinitely (either as exact or random
fractals) or they grow and contract chaotically.

henrandomness is introduced in cellular automata

by means of making the initial state disordered

(where each site is assigned each of its possible val-
ues with an independent equal probability), the patterns
generated can be again classified into four distinct catego-
ries. The difference, however, is that now the category of
exact fractals (that we find in the cases with simple initial
states) disappears, while a new category emerges. The four
categories now are: 1) spatially homogeneous patterns, 2) a
sequence of simple stable or periodic structures, 3) chaotic
aperiodic behavior, and 4) complicated localized structures
showing self-organization and often propagation (Figure 7).
The analogue of these four classes to dynamical systems is
obvious. Class 1 corresponds to limit points, class 2 to limit
cycles, and class 3 to chaotic attractors. No direct correspon-
dence for class 4 is immediately obvious. But we now know
that this class corresponds to the so-called “onset of chaos”
or “edge of chaos,” which is the region in the parameter space
of a system where it begins a transition from a periodic re-
gime to chaotic behavior [17, 18]. This
discovery is fundamental to what is
now called the “science of complex-
ity.” Therefore, when rules and ran-
domness are present, exact fractals
disappear, while steady states, peri-
odic evolutions and chaos remain,
and self-organization appears. Thus,
we conclude from this discussion that
all phenomena observed in nature
can be explained only if randomness
is built-into the picture!

THE ROLE OF RANDOMNESS

Others there are who believe that
chance is a cause but that it is inscru-
table to human intelligence as being a
divine thing and full of mystery.
Aristotle, Physics, Book I1,4.

The obvious question that arises next

iswhatis the role of randomness? Why
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Evolution of various cellular automata from disordered initial states.
| The four distinct classes discussed in the text are shown [16].

do we have to have randomness? As has been eloquently
presented by Prigogine’s group [19, 20], randomness is
closely connected to irreversibility, which is a fundamental
property in everything that happens in our universe. Addi-
tional insight into this question comes from experiments.
The structure in Figure 9 was generated by a model that
is a modification of the nonequilibrium model proposed
in [21] for the modeling of two-dimensional radial dis-
charge (Lichtenberg figures). The details of the model [10]
used to simulate lightning in the atmosphere are that the
simulation is a step-wise procedure carried on a two-
dimensional lattice (Figure 8), in which the potential (o)
of the top and the bottom row is fixed at values ¢ = 0 and
o = 1, respectively. Periodic boundary conditions are as-
sumed at the sides of the lattice, with only the middle point
of the top row (A)) being capable of growth. Given these
boundary conditions, the potential at every point of the

i [H

— 151 LATTICE UNITS =—

STEP 2

STEP 3

— 251 LATTICE UNITS <—

d):O

A,
o IAzo
O

.., 8tc.

lllustration of the model used to simulate lightning. The discharge pattern is
indicated by the black dots connected with solid lines and is considered equi-
potential. the open circles indicated the possible growth sites. The probability
of each one of these sites is proportional to the local potential field (see text for

details).
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An example of a lightning generated by the model discussed here. This
lightning is a random fractal with a dimension of about 1.37.

30 COMPLEXITY

lattice is obtained by solving the Laplace equation V?¢ = 0.
On a two-dimensional lattice this is obtained by iterating
the following equation using successive over relaxation
(SOR):

J.

(/)”:1/4[@ +0

i+, i-1,j

+0 +0

ij+1 ij-1

All the immediate nonzero neighbors of the point A, are then
considered as possible candidates, one of which will be added
to the evolving structure. The candidates are indicated in Fig-
ure 8 by the open circles, while the evolving pattern is given by
the black dots. In step 1 there is only one possible candidate.
Therefore, point A, will be added to the discharge pattern which
is considered equipotential (o = 0). In step 2, one again solves
the Laplace equation taking into account that the boundary
conditions include the discharge pattern. There are three pos-
sible candidates in step 2, each one is assumed to be associ-
ated with a “growth” probability p which is defined as

p,=07%0}

where i = 1,....,N, with N being the number of all possible
candidates. Accordingly, at each step a probability distribu-
tion is defined. Given this distribution, a candidate is chosen
at random and is added to the evolving pattern. The above
procedure is then repeated until the discharge reaches the
bottom row. An example of such a simulated lightning is
shown in Figure 9. This type of modeling is a classic example
of how rules (boundary conditions, plus the Laplace equation)
and randomness can produce objects very similar to those
seen in nature. In fact, the lightning in Figure 9 has a fractal
dimension of about 1.37 which is close to the average value of
1.34 obtained from calculations done with many photographs
of real lightning in the atmosphere [10].

nother example is snowflakes. The hexagonal symme-

try observed in natural snowflakes is due to the molecu-

lar structure of ice. The actual growth and shape of a
snowflake is subjected to Darcy’s law [11] and to environ-
mental effects (noise). Snowflakes have been simulated by
a statistical mechanical model [11] that incorporates a pa-
rameter producing the six-fold anisotropy of natural flakes,
Darcy’s law, and random motion of water molecules. Such
simulations, unlike the Koch snowflake (Figure 1), which is
an exact fractal, produce flakes that are random fractals
having a dimension of about 1.5, and display a striking re-
semblance to natural snowflakes [22].

Since the model gives the probability of every site being
occupied at each step, one may calculate the probability of
the whole structure by multiplying the probabilities associ-
ated with all the selected points. In general, if we assume that
at the nth step a structure is made up of n points, denoted
ALA,,.....,A , which are selected in that order, then the prob-
ability, P(n) of the structure is given by

© 1996 John Wiley & Sons, Inc.



( P(n) = P(A,A,,....,.A ) = little to the discharge process (branching structures remove
‘ =P(A)PAJA)PAJAA)....PAJA A .. .A). charge from a large area more effectively than a straight line).
Thus, in nonequilibrium systems (in the linear regime), ef-

Experimentation with random fractal lightning, and with fectiveness and least dissipation require rules and random-
“cooked up” exact fractals and non-fractal structures [23] hav- ness to work together. Far from equilibrium, however, events
ing the same number of points, indicates that arandom fractal may be different. In far from equilibrium states a fluctuation
outcome is 10° (1) times higher than that of a nonfractal or within the system may become too big. Then, especially near
an exact fractal outcome after only 200 steps. This staggering bifurcation points, the fluctuation may drive the average and
number clearly demonstrates that random fractals are very basically dictate the fate of the system. Such situations are

likely events. When a system is in a i S
steady, nonequilibrium state in the lin-

ear thermodynamic regime (i.e., when ...the theory of nonlinear dynamical systems and chaos does provide
the system cannot achieve an equilib- a new framework to explain the "random looking” character of many
rium state at which the entropy pro- ohservahles and to define the limits of predictability of natural systems.
duction becomes zero), the most prob-

able state corresponds to the one of

minimum entropy production or to a state of least dissipa- characterized by self-organization. The Benard convection is
tion [20]. Thus, the fact that random fractals are the most prob- such a situation. For typical convection we can assume that
able events provides a direct link between the existence of ran- there are always small fluctuations from the average current,
dom fractals and the adaptation of nature toward least which decay below some critical value of the temperature gra-
dissipation. If chance is eliminated in the lightning model by dient. Above the critical value, some fluctuations may amplify
imposing a rule dictating that the point with the highest thus starting a macroscopic ctstent. In effect, we have a large
growth probability value is always chosen, then we will always fluctuation taking over the average current and producing a
end up with a nice Euclidean straight line. Such a result, how- coherent structure (self-organization). Note that the above
ever, is hardly appropriate for nature since it contributes very |  factsare in complete agreement with the self-organization ob-
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served in the so-called “edge of chaos,” or “onset of chaos,”
which as mentioned above in the presence of randomness
(disordered initial states) is the region in the parameter space
where the system begins to bifurcate toward chaos.

SUMMARY # 2

It is now easy to see how a general framework for natural
processes based on the notion of connected subsystems
discussed earlier and on randomness could explain how
physical processes emerge. The actual source of random-
ness is not important. Only the fact that it exists is of signifi-
cance. The four fundamental forces cause rules and dynami-
cal systems to “crystallize” at various space/time scales. Our
solar system, El Nino, a cloud, and an ecosystem are such
systems. These systems are usually nonlinear and may ex-
hibit a variety of stable periodic (equilibrium attractors) or
chaotic (nonequilibrium attractors) behaviors. All systems
are connected with each other, as in a web with various de-
grees of connectivity. Accordingly, any system can transmit
“information” to another system thus perturbing its behav-
ior. This “information” plays the role of an ever present ex-
ternal noise which perturbs the behavior of the system.
Depending on the connectivity of the system to the other
systems, the effect can be dramatic or negligible. Systems
with weak connectivities will be approximately “indepen-
dent,” and as such they may exhibit low-dimensional chaos
depending on the parameters involved. Nonlinearity and
imperfect initial conditions will make these systems unpre-
dictable after some time. Identification of these subsystems
thus becomes important, since it allows us to treat these
systems as isolated or closed systems. Otherwise, low-
dimensional chaos will not be favored. Instead, spontaneity
and self-organization may ensue as external (and possibly
internal) causes become important. Similar remarks apply
to the existence of scaling.

n this article, we have presented evidence linking random-

ness and its interplay with dynamical systems (rules) to

physical processes. We have shown why this is desirable
and how it leads to a conceptual framework for physical
processes. Apart from the theoretical and possibly philo-
sophical aspects of our paper, an extremely important issue
arises: The prediction of time series. In the past, prediction
of random-looking “complex” records exhibiting spectra
appropriate to noise were treated purely statistically. Then
came chaos, which taught us that random-looking behav-
ior and broad-band spectra may arise from simple deter-
ministic systems. A switch to dynamical-type prediction
then followed [24-26]. It is clear from our work, however,
that the two cannot always be separated. If rules and ran-
domness coexist then approaches used to model and pre-
dict the outcome of physical systems should combine both!
We hope that this work will motivate further developments
in this area.
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