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Abstract—We investigate the properties of a marine dynamical system by means of time series
of the sea-level height at four locations in the Saronicos Gulf in the Aegean Sea, Greece. In order
to characterize the dynamics, we estimate the dimension of the underlying system attractor, and we
compute its Lyapunov exponents. Dimension estimates indicate that the dynamics can be explained
by a low-dimensional deterministic dynamical system. Lyapunov exponent estimates further substan-
tiate the above conclusion, while at the same time, indicate that the dynamical system is a rather
nonuniform chaotic one.
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1. INTRODUCTION

Lately, ideas from the theory of nonlinear dynamical systems and chaos have been applied to many
problems from many different disciplines, including oceanographic and atmospheric sciences. The
main goal is the search for low-dimensional chaos and the extraction of the properties of the
underlying attractors, if any. The procedure often involves an observable (time series) and a
reconstruction of the attractor. The reconstruction is achieved by taking a scalar time series
x(t;) and its successive time shifts (delays) as coordinates of a vector time series given by:

X(t:) = {x(ti), x(ti + 7)o x(ti + (n—1)7)}, (1)

*Author to whom all correspondance should be addressed.
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where n is the dimension of the vector X(t;) (often referred to as the embedding dimension) and
T is an appropriate delay [1-3].

For an n-dimensional phase space, a “cloud” or a set of points will be observed. From this
set, the various dimensions and exponents that characterize the underlying attractor can be
calculated. The concepts behind such procedures have been developed and presented extensively
over the past five years in numerous papers and books (see for example [4] and references herein).
Therefore, we will present the major ideas behind these procedures, and we will avoid lengthly
discussions.

The most popular approach is to calculate the correlation dimension. According to this ap-
proach [5,6], given the cloud of points one finds the number of pairs N(r,n) with distances less
than a distance . In this case, if for significantly small r, we find that:

N(r,n) rdz, (2)

then the scaling exponent ds is the correlation dimension of the attractor for that n. Since the
dimension of the underlying attractor is not known, we test equation 2 for increasing values of n
and check for a saturation value D, which will be an estimation of the correlation dimension of
the attractor. For more details on the aforementioned procedures and the applications related to
weather, climate and other areas, see the review articles by Tsonis [4] and Tsonis and Elsner [7,8].

It should be mentioned at this point that there are no certain rules for choosing 7. When
we reconstruct the attractor by producing a cloud of points at a given embedding dimension,
those points should be independent to each other. Otherwise, x(t + 7) = x(t) and the points
tend to fall on the diagonal. As a result, the estimation of the correlation dimension may be
biased (typically underestimated). Therefore, 7 must be chosen so as to result in points that
are not correlated to previously generated points. Thus, a first choice of 7 should be in terms of
the decorrelation time of the time series under investigation. The question now arises: How do
we define the decorrelation time? A straightforward procedure is to consider the decorrelation
time equal to the lag at which the autocorrelation function for the first time attains the value of
zero. Other approaches consider the lag at which the autocorrelation function attains a certain
value like 1/e, 0.5 [9], or 0.1 [10]. Another suggestion for the choice is to take 7 equal to T/n
where T is the dominant periodicity (as revealed by Fourier analysis) and n is the embedding
dimension. In this way 7 gives some measure of statistical independence of the data average
over an orbit, and it is an appropriate approach if the autocorrelation function is periodic. As
it was pointed out, however, by Frazer and Swinney [11] the autocorrelation function measures

‘the linear dependence among successive points and may not be appropriate when we are dealing

with nonlinear dynamics. They argue that what should be used as 7 is the local minimum of the
mutual information that measures the general dependence among successive points. Evidently,
no one of the aforementioned rules has emerged as the undisputed rule for choosing 7, but the
mutual information approach appears to have the edge. Nevertheless, a very reassuring practice
is experimenting with various 7’s (while repeating the aforementioned constraints) in order to
address possible effects of the choice of 7.

Another set of exponents that can characterize the properties of an attractor of a dynamical
system are the Lyapunov exponents. The Lyapunov exponents are related to the average rates of
convergence and/or divergence of nearby trajectories in phase space and, therefore, they measure
how predictable or unpredictable the system is.

Consequently, the Lyapunov exponents are defined as follows. We start with a set of initial
conditions in an attractor (embedded in an n-dimensional Euclidean space) that are confined
within an n-dimensional sphere. Subsequently, we begin to monitor the long time evolution of
this sphere. We order the principal axes of this sphere from the most rapidly to the least rapidly
growing, and we compute the mean growth rate A; of any given principal axis p;. We may define
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these growth rates as follows:

et 3 [ adn[20] - i Lo (20,

Here, p;(0) is the radius of the principal axis p; at t = 0 (i.e., in the imtial hypersphere) and p;(t)
its radius after a long time T'. The set of A;’s is referred to as the Lyapunov exponent spectrum.
Apparently, there are as many Lyapunov exponents as the dimension of the phase space.

When at least one Lyapunov exponent is positive, then the system at hand is chaotic and the
initial sphere will evolve to some complex ellipsoid structure reflecting the exponential divergence
of nearby initial conditions along at least one direction on the attractor. This “sensitivity” to
the initial conditions results in an inability to predict the evolution of the trajectory beyond an
interval of time of the order of the inverse of the divergence rate. When no positive Lyapunov
exponent exists, then no exponential divergence exists, and thus, the long-term predictability of
the system at hand is guaranteed. In a way, we may say that the exponents measure the rate at
which the system destroys information. Positive exponents give an idea of how fast information
contained in a set of initial conditions initially very close to each other is lost due to the action
of the stretching and folding of the chaotic attractor and negative exponents give an idea about
the average rate at which information contained in transients is lost. Thus, in a sense, negative
and positive exponents define dominant time scales in the evolution of a dynamical system (see
for example [12]).

With the notable exception of the work of Osborne et al., [13], Provenzale et al., [14] who
investigated the chaotic behavior in large and mesoscale motions in the Pacific Ocean, not much
work has been done in applying ideas from the theory of dynamical systems in oceanography.
In other fields such as the closely related areas of atmospheric sciences ([7,10,12,15-19), etc.)
there has been a lot of activity in applying these ideas and low-dimensional attractors have been
suggested to underline weather observables like geopotential, wind, rainfall, etc. One of the
critical and much debated issues in these and other studies that used the above techniques to
reconstruct the attractor underlying an observable is the length of the observable record. In
other words, how many points are needed to confidently estimate the various dimensions and
Lyapunov exponents. Early theoretical studies suggest that the number of points should be of
the order of 104 or 42¢ where d is the dimension of the underlying attractor (which one tries to
calculate) [20,21]. Lately, however, it is being realized that the required number of points might
be significantly less and approximately of the order of 1021944 for a confidence level of 95% [22].
Because of the above “theoretical” uncertainties a certain procedure must be followed in order to
ensure the existence of finite dimensions and Lyapunov exponents. These procedures will become
clear as we proceed with the presentation of our results.

2. RESULTS

Here we apply the above methods to data which represent observables from a marine dynamical
system. These observables show the variation of the sea-level (as measured from the bottom of the
sea) as a function of time at four stations (Souvala, Ag.Marina, Vouliagmeni and Salamina) in the
Saronicos Gulf in the Aegean Sea (see Figure 1). The measurements were made from July 1986
to September 1987 by the University of Athens using Aanderaa WLR-5 bottom pressure gauges.
Each record is longer than a year with the exception of Ag.Marina. The temporal resolution of the
records is 10 minutes. Part of the dynamics of the sea level are the waves generated by the wind.
This time scale is relatively small and thus the sampling time of 10 minutes is not considered too
short. Specifically, the total number of data points for each station is 61,583 (Souvala), 49,400
(Ag.Marina), 60,046 (Vouliagmeni) and 62,184 (Salamina). Thus, a concatenated time series
(including information from all four stations) will consist of 233,213 data points. We should
mention at this point that:
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Figure 1. Map of the area. All four stations used in this study are located inside the
outlined box of size approximately 60 x 100 km.
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(a) The data represent sea level heights as measured from the ottom of the sea.

The temporal resolution is 10 minutes. The record is over fourteen months and it
was measured at Salamina station in the Saronicos Gulf of the Aegean Sea, Greece.

Figure 2.
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(c) The logarithm of the spectral density function. The spectrum shows various
peaks on a continuous background, suggesting a nonperiodic evolution.

Figure 2 cont.
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1. When we constructed the concatenated signal, we had to adjust the individual records in
order to deal with the fact that the depth of the bottom of the sea at the four stations is
not the same.

2. Even though individual record might show a slight trend the concatenated signal is rather
stationary with a trend very close to zero.

Our analysis was carried out for each station individually and when feasible for the concatenated
time series. Figure 2 shows the record of one of the stations (Salamina). In the same figure, the
autocorrelation function and the spectral density function are also shown. The spectra shows
various peaks (periodicities) superimposed on a continuous background. Such spectra often
suggest chaotic evolutions. The autocorrelation function decreases with increasing lag. From
this graph, we can define a decorrelation time. The decorrelation time may be defined as the
lag time at which the autocorrelation falls below a threshold value. This threshold value is not
uniquely defined, and in general, it depends on the problem in hand and the assumptions about
the data set. In geosciences this threshold value is commonly defined as 1 /e, especially if the
autocorrelation function is nearly exponential [23]. But in view of the potential problems when
correlated pairs are included in the calculations [18,24], we decided to be more conservative. We
thus used a decorrelation time that is more ‘restrictive’ and at the same time allowed us to work
with a sufficiently large number of pairs. We adapted a T equal to 6000. For lags greater than
6000, the autocorrelation drops and remains below a value of 0.15. From these data, the state
vector X (t) was generated (after the trend in the data was removed) and the phase space was
produced for embedding dimensions two and higher.

Figure 3 shows the logarithm of the function C(N,r) as a function of logr for selected embed-
ding dimensions n. The function C(N,r) is defined as:

N
CN.1) = =y 2o Mo =l =2l

i,j=1

where H(z) is the Heaviside step function. The summation counts the number of pairs (z;, z;) for
which the distance [|z; — ;|| is less than 7 and which are separated in time by at least the decor-
relation time. Therefore, according to equation 2 for a given embedding dimension, this graph
will give the exponent d; (correlation dimension) once a scaling is identified. For each embedding
dimension, in order to identify this scaling region, we plotted the slope: [Alog C(N,r)/Alogr]
as a function of log C(N,r). If there exists a clearly defined scaling region in the log C(N,r)
vs. logr plots, then we should be able, on a slope vs. log C(N,r) plot or slope vs. logr plot, to
observe a plateau. This plateau provides an estimation for the exponent dy. Figure 4 is a slope
vs. log C(N,r) plot for n = 10 and n = 12. A plateau is evident over the log C(N,r) range from
about —7.3 to about —5.0 for both embedding dimensions. In both cases, the plateau fluctuates
slightly above a value of about 8.8 which is an estimate of the exponent d» for both n = 10 and
n = 12. Before, however, we accept these estimates of the exponent d; as accurate, we have
to present evidence that dz has not been underestimated. The reason is that for D, = 8.8 one
would need more than 62,000 points (according to the formula of Nerenberg and Essex [22]).
When the number of points involved in the analysis is not large enough, D could be underesti-
mated [8,18]. We, thus, have to repeat the above analysis for a progressively increasing number
of points (length of time series) and check whether or not we observe changes in the estimated
values of dy [4]. As an example, we present Figure 5 which shows the estimated exponent d, for
n = 12 as a function of the number of points available. We clearly see that after about 40,000
points, the value of d; does not change. We, thus, can be very confident that the estimated value
of d, for n = 12 from Figure 4 is accurate. When we repeat the above step, for each embedding
dimension 2 < n < 12, we obtain Figure 6. The scaling exponent ds reaches a saturation value
of about 8.8 at an embedding dimension n = 10.
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Figure 3. Plot of log C(N, ) vs. logr for selected embedding dimensions (n) for the
Salamina signal. Note the convergence of slopes as n increases.
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Figure 4. From Figure 3 a plot of slope [Alog C(N,r)/Alogr] vs. log C(N,r) for
embedding dimensions n = 10 and n = 12. Note the plateau observed at —7.3 <
log C(N,r) < =5.0.

The observed power spectrum of the sea-level data is shown in Figure 2c. One may argue
that such a spectra follow a power law of the form 1/f°. It has been shown [25] that stochastic
processes that exhibit such type spectra will result in a finite correlation dimension Dy = 2/a — 1.
In our spectra, depending on the range of frequencies considered, 1.60 < a < 2.30. Thus, 1.5 <
D < 3.3. This dimension is considerably less than our estimated dimension, and thus, we can
reject the hypothesis that the sea-level data is such a stochastic process. As an additional test, we
repeated the above analysis for a random sample of the same size simulated by inverting the power
spectrum, and then, multiplying each complex amplitude by e'® where ¢ is uniformally distributed




80 G. N. TRIANTAFYLLOU et al.

o 10 - n=12
v .
=
i
4 9 X e X X
o) x
o
b3
w
o 8%
z
-l
<
2)
n 7-
] A ¥ L] 1]
10°* 2x10® 3x10° 4x10* sx10*  6x10*

NUMBER OF POINTS

Figure 5. Scaling exponent d2 (correlation dimension), for the Salamina data as a
function of the sample size (length of signal).
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Figure 6. Scaling exponent d2, as a function of the embedding dimension n. Full
circles correspond to the Salamina signal and squares to a surrogate data set of the
same size as the sea-level data. Note the saturation of the scaling exponent observed
for the sea-level data while there is no saturation for the surrogate signal. From the
third figure, it is estimated that. for the Salamina signal, D2 = 8.8.

in [0, 27]. Such a simulation provides a surrogate data set [26.27] having the same autocorrelation
structure as the real data but not the dynamics. The results are indicated by squares in Figure 6.
Note that no saturation for the random sample is observed. Similar conclusions are obtained for all
available stations. Specifically. we estimated a correlation dimension of 8.7 for station Souvala, of
9.1 for station Vouliagmeni and of 8.6 for station Ag.Marina. All the dimension calculations made



Marine Dynamical System

0.4 P T VO NN YT Y TR SRR WY WY T S SRUNNY SN WA NN ST S S B
0.3 .
> ]
E |
= .
2 o.2-
m ] ]
(@) J
m 1
m -4
2.1 -
[ Y A L L A A B
-0.4 -8.2 (] 6.2 2.4 2.6
RATE OF DIVERGENCE (1/10 MIN)
(a) The largest Lyapunov exponent.
0.5 PSSR N ST ST SN SO TSN YOS AN YU N ST SN N SN ST SN N SN ST U U B S MG |
0.4 N
> ] I
E o] :
) ] I
< ] !
m - -
g 8.2 - o
a ) I
0.1 ~—
0 LELALELEE LA LN SR RS BN BN B

-3 -e2.5 -2 -1.5 -1 -0.5 %} 8.5

RATE OF DIVERGENCE (1/10 MIN)

(b) The A¢ exponent.

Figure 7. Histograms of the probability distribution of rates of divergence whose
average yield (a) and (b). This figure corresponds to the Salamina signal.
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use of a fast algorithm developed by Theiler [28]. Nevertheless, for high embedding dimensions
and given the size of each record access to supercomputing was necessary. These calculations were
performed using the CRAY computer in the National Center for Supercomputing Applications
in Urbana, Illinois. It should be mentioned that experimentation with different 7’s ranging from
1000 to 8000 provided dimension estimates of similar magnitudes as above.

The results reported so far strongly suggest that the variability of the marine system in ques-
tion is dictated by a single low-dimensional attractor (since all estimates are of similar magni-
tude). The estimated correlation dimensions are not integers suggesting that the attractor is not
topological but it is a fractal set. In view, however, of possible inaccuracies in estimating dimen-
sionalities, it is desirable to establish the existence of such attractors with additional evidence.
We, therefore, proceed by presenting results dealing with the estimation of the entire spectrum of
Lyapunov exponents. The computation of the Lyapunov exponents is based on the work of Sano
and Sawada [29] and Eckmann et al. [30]. The algorithm at first calls for embedding the data
into some dimensional space (preferably of a dimension a little higher than the dimension of the
underlying attractor). Then, for a point of the trajectory, we determine the neighbors within a
hypersphere of radius r, and subsequently, we seek to construct the operator which describes the
evolution of this hypersphere after some time and which provides the rates of divergence along all
the directions. Repeating this procedure for a large number of steps (iterations), we can obtain
a set of rates of divergence whose averages are nothing else than the Lyapunov exponents we are
looking for. Here, we applied their algorithm to each station separately and to the concatenated
series. In doing that, we assume that the concatenated series could have been just one observable
from our dynamical system. This assumption is more or less justified from the results reported
above which indicate that the four stations behave more or less as being parts of a single dynam-
ics encompassing the whole gulf. It can be verified (see also [12]) that the discontinuities of the
concatenated signal at the connections between the four individual signals would probably result
in an overestimation of the Lyapunov exponents by only about 0.1%. Table 1 gives the results
for each of the stations and for all stations together (concatenated record). We choose to present
the values of the highest six Lyapunov exponents (all the rest are negative). Together with the
mean divergence rate along those six directions, we also report the standard deviation from the
mean. This provides us information about the structure of the attractor locally. If the attractor
is completely uniform, then the mean rate of divergence along any direction is the same at any
place in the attractor (thus the variance is zero). If the variance is not zero, that will indicate
that the attractor is highly non-uniform and that the trajectory passes through regions of varying
rates of divergence (we may say that the system switches from states of large predictability—low
rate—to states of small predictability—high rate). We may observe the following from Table 1:

1. In all cases, we obtained two positive Lyapunov exponents. This is an indication of a
chaotic attractor in higher than three dimensions. The fact that their magnitude differs
by a factor of three may indicate that the chaotic dynamics arise from the interplay of two
independent mechanisms of instability, one of which is more important than the other.

2. In almost all cases, we observe a very close to zero negative value for A3 (—0.013, —0.008,
—0.012, —0.006, --0.008). This is in accordance with the fact that one of the exponents
must always be zero expressing the fact that there is no contraction along the direction
of the orbit. The fact that the algorithm reproduces this provides confidence about the
accuracy of the estimated exponents.

3. There are at least three negative exponents. As the largest positive exponent is about a
factor of two greater than the absolute value of the largest negative exponent, it may be
that a dominant system time-scale does exist (at least over the data range).

4. The sum of the two largest positive exponents is found between 0.090 and 0.133 (10 min) .
This is an estimate of the Kolmogorov entropy whose inverse (inverse or divergence rate)
provides an estimate of the mean predictability time of the signal. Thus, we obtain that
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Table 1. The first six largest Lyapunov exponents (mean divergence rate along six
directions) and their standard deviation for each station separately and for all stations
together (concatenated signal).

i Mean Divergence Rate A;(10min)~! | Variance!/2 AX;(10 min)~!
Souvala (N = 61, 583)
1 0.080 0.093
2 0.037 0.089
3 -0.013 0.099
4 -0.041 0.121
5 -0.107 0.180
6 —-0.241 0.328
Ag.Marina (N = 49, 400)
1 0.085 0.098
2 0.027 ) 0.092
3 —0.008 0.095
4 —0.048 0.125
5 —0.098 0.167
6 —-0.245 0.320
Vouliagmeni (N = 60, 046)
1 0.064 0.088
2 0.026 0.081
3 -0.012 0.097
4 —0.053 0.125
5 -0.111 0.181
6 -0.233 0.318
Salamina (N = 62,184)
1 0.091 0.102
2 0.036 0.091
3 —0.006 0.099
4 —0.051 0.123
5 —0.106 0.177
6 -0.237 0.319
All Stations (N = 233, 213)
1 0.095 0.106
2 0.038 0.093
3 -0.008 0.101
4 —0.046 0.120
5 -0.105 0.172
6 -0.256 0.348

the signals involved have an intrinsic predictability time of at least one hour but less than
two hours. This verifies that our data, which are sampled every 10 minutes, do not suffer
from an oversampling problem.

. All exponents are subject to strong variability (as indicated by the magnitude of the re-
ported standard deviation values). Figures 7 and 8 show histograms of the probability dis-
tribution of the rates of divergence whose average yield (a) the largest Lyapunov exponent
and (b) the \¢ exponent, for the Salamina and for the concatenated signal respectively.
In all cases, we observe rather broad distributions which are distinctly asymmetric. This
is an indication that the underlying attractor is highly nonuniform.
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We should mention here that even though in the Lyapunov exponents analysis, we considered
the concatenated series, it was not feasible to consider it for the dimensional analysis due to
extreme computing demands.

Note that, according to the Kaplan-Yorke conjecture [31], the dimension of the attractor is
related to the Lyapunov exponents via the relationship:

where j is defined by the condition that Zj=1 Ai > 0 and Zﬁ:ll Ai < 0. The Lyapunov exponents
estimated here will result in values of D around five. This is not exactly what we find from our
correlation dimension analysis. Nevertheless, the differences are not great (less than a factor of
two). Such differences have been observed elsewhere in real data analysis [12] and quite possibly

are caused by how the algorithms process noise in the data.

3. CONCLUSIONS

We have provided strong evidence that the variability of sea-level in a part of the Aegean Sea,
Greece can be attributed to a single chaotic dynamical system of a few degrees of freedom with
a low-dimensional attractor.

The evidence consists of correlation dimensions and Lyapunov exponents estimates as deduced
from observations at four different locations. Correlation dimension estimates are all very similar
indicating the existence of a single low-dimensional system. The Lyapunov exponents spectrum
includes in all cases two positive exponents indicating that the dynamical system in question is
chaotic with its attractor embedded in a higher than three-dimensional space. These positive
Lyapunov exponents provide us with a clue about the predictability of such a system which is of
the order of one to two hours.

The developments in the study of many chaotic dynamical systems have suggested that nature
imposes limits on prediction. At the same time, however, it has been realized that the very
existence of the attractors implies that determinism may underlie processes which were thought
to be random. We hope that our results will provide a stimulus for further research in this area.
It will be interesting, for instance, to investigate the dynamics of models that are used to study
and/or predict such phenomena in order to compare the variability described by these models
and by the observations.
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