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Abstract. In this paper we present a review of
advances made and problems still existing in-the
application of the theory of chaos and dynamical
systems to time series. In particular we discuss is-
sues pertaining the estimation of dimensions, Lya-
punov exponents and nonlinear prediction from an
observable. We analyze the problems and discuss
proper ways to deal with them.

1 Introduction

Lately, ideas from the theory of nonlinear dynam-
ical systems and chaos have been applied to many
problems from many different disciplines. The ma-
in goal is the search for low-dimensional chaos and
the extraction of the properties of the underlying
attractors, if any. The procedure often involves
one observable (time series) and a reconstruction
of the attractor. The reconstruction is achieved by
taking a scalar time series z(t;) and its successive
time shifts (delays) as coordinates of a vector time
series given by:

X(t;) = {x(ti),x(ti + 1), . Lx(ty + (n — 1)7}(1)

where n is the dimension of the vector X(t;) (of-
ten referred to as the embedding dimension) and
7 is an appropriate delay (Packard et al. 1980;
Ruelle 1981; Takens 1981). For proper reconstruc-
tions the embedding dimension n should be equal
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or greater to 2D + 1, where D is the dimension
of the manifold containing the attractor. Such an
embedding preserves the topological properties of
the attractor. More specifically the embedding will
be a diffeomorphism, a differentiable mapping with
differentiable inverse from the true phase space to
the delay space. This is Whitney’s theorem and,
strictly speaking, is valid only when we have an in-
finite and dense set in our disposal. When we only
have a limited dataset the theorem may not be
valid. In fact, in those cases the word embedding
is used loosely as any topologist will argue.

2 The first problem

Even before we begin to discuss methods to extract
properties of the attractors we are faced with our
first problem. What is a proper delay parameter
7 in equation (1)?

When we reconstruct the attractor by producing
a cloud of points at a given embedding dimension,
those points should be independent of each other.
If they are not the correlation dimension could be
underestimated (Figure 1). Therefore, 7 must be
chosen so as to result in points that are not cor-
related to previously generated points. Thus, a
first choice of 7 should be in in terms of the decor-
relation time of the time series under investiga-
tion. The question now arises: How do we define
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Fig. 1. a) Autocorrelation function of time series obtained
from a dynamical system that has a 2-torus attractor.

b) Reconstruction in an embedding dimension three using
+ — 100. Note this T corresponds to highly correlated val-
ues and as a consequence we obtain a limit cycle.

¢) Reconstruction using 7 = 50 which corresponds to vir-
tually uncorrelated values. Now we obtain a drastically

different picture closer to the true torus.
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the decorrelation time? A straightforward proce-
dure is to consider the decorrelation time equal'
to the lag at which the autocorrelation function
for the first time attains the value of zero. Other
approaches consider the lag at which the autocor-
relation function attains a certain value like 1/e,
0.5, or 0.1 (Tsonis and Elsner 1988). Another sug-
gestion for the choice is to take 7 equal to T'/n
where T is the dominant periodicity (as revealed
by Fourier analysis) and n is the embedding di-
mension. In this way T gives some measure of sta-
tistical independence of the data average over an
orbit and it is an appropriate approach if the auto-
correlation function is periodic. As it was pointed
out, however, by Frazer and Swinney (1986) the
autocorrelation function measures the linear de-
pendence among successive points and may not be
appropriate when we are dealing with nonlinear
dynamics. They argue that what should be used as
7 is the local minimum of the mutual information
that measures the general dependence among suc-
cessive points. Evidently, no one of the aforemen-
tioned rules has emerged as the undisputed rule for
choosing 7, but the mutual information approach
appears to have the edge. Nevertheless, a very re-
assuring practice is experimenting with various T’s
(while repeating the aforementioned constraints)
in order to address possible effects of the choice of
T.

Once a delay T has been chosen, the character-
ization of a dynamical system commonly includes
estimation of the various dimensions, estimation
of Lyapunov exponents and nonlinear prediction.
As Figure 2 depicts there are several problems for
each and every one of those procedures. Below we
discuss and we propose ways to deal with those
problems.

3 Estimating Dimensions
3.1 Existence of scaling

For an n-dimensional phase space, a “cloud” or
a set of points will be observed. From this set
the various dimensions and exponents that charac-
terize the underlying attractor can be calculated.
The most popular approach is to calculate the cor-
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Fig. 2. Approaches used in scarch for determinism in ob-
served data and the associated problems.

relation dimension. According to this approach
(Grassberger and Procaccia 1983a,b), given the
cloud of points one finds the number of pairs N (r,n)
with distances less than a distance r. In this case,
if for significantly small 7, we find that:

N(r,n) x rda (2)

then the scaling exponent d; is the correlation di-
mension of the attractor for that n. Since the di-
mension of the underlying attractor is not known,
we test the power law of equation (2) for increas-
ing values of n and check for a saturation value
D,, which will be an estimation of the correlation
dimension of the attractor.

The scaling exponent d; is often found via a least
square fit over some range of scale where the log N
vs logr plot appears linear. However, log —log
plots have a tendency to display “linear” regions
even when they are completely nonlinear. As a re-
sult, estimating d, (and then D;) as such, may not
be very reliable. Figure 3 demonstrates the above
point by showing the logarithm of the root mean
square fluctuation F(l) of some walk as a function
of the logarithm of displacement [. According to
the theory of random walks a power law F(l) o [,
where a is the scaling exponent that characterizes
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Fig. 3. a) log F(l) versus log! for some walk. The graph
displays an apparent linear region over which a linear re-
gression provides F(1) oc [* with a = 0.67.

b) The first derivative (or local slope) of the data as a func-
tion of log! reveals that the graph in plot 3a is indeed non-
linear and therefore a scaling does not exist.

the random motion (see Tsonis et al. 1993a). In
the log — log plot an apparent (and tempting?) lin-
ear region with a slope of 0.67 exists over a wide
range of scales which will indicate that the walk is
indeed a random walk with a =~ 0.67. Figure 3b
shows the local slope or more formally the first
derivative of log F(I) with respect logl. If scaling
in figure such as 3a exists, then it follows that a
plateau in figures such as 3b would be observed at
dlog F(l)/dlogl =~ a. As can be seen from Fig. 3b
no such a plateau can be justified, therefore the
apparent scaling in Fig. 3a does not represent a
real scaling, which means that in such cases a cal-
culation of the exponent a is meaningless! There-




fore, the estimation of exponents that characterize
power laws should not be found by “looking” at
log — log plots, but their existence should be inves-
tigated via plots of slope versus log(scale). Unfor-
tunately it is still the practice to estimate such ex-
ponents (and therefore dimensions) using the least
*squares approach and therefore many of the re-
ported cases of scaling might not be accurate.

3.2 Critical embedding dimension

For a finite data set because of Equation (2) the
population of pairs of points on smaller scales is
smaller than the population of pairs on longer sca-
les. Thus, if for a fixed n the number of poinis
in the set becomes smaller, the population of pairs
over the scales for which Equation (2) holds begins
to be depleted. As we continue to decrease the
number of points (for our fixed n always) we will
observe:

1. more and more depletion at smaller scales (sin-
ce less and less points will be found) and

2. large fluctuations of N (r,n) due to small pop-
ulations (and thus inadequate statistics) at
slightly larger scales.

The net result is that the scaling region may be
completely masked. Any straight line fitting at
this point will result in a false correlation dimen-
sion for that n. Thus for an accurate estimation
of the slope d, on a log N(r,n) versus logr plot
requires a minimum number of points.

It should now be emphasized that by embed-
ding the dataset into continually higher dimen-
sions we effectively “distribute” the same num-
ber of points into continually higher dimensional
space. In effect we go from a densely populated
low-dimensional space to a sparsely occupied high-
dimensional space. The result will be the same as
before: for very small scales N(r,n) goes to zero
(depopulation) and for large scales (scales close
to the radius of the set) N(r,n) = N(N — 1)/2
independently of r and n (saturation). Thus, at
some embedding dimension the scaling region will
not be clearly defined as it will be “lost” between
depopulation and saturation. The embedding di-
mension above which the scaling region cannot be
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Fig. 4. Alog N(r,n)/Alogr as a function of log r for em-
bedding dimension 2 (A), 6 (O), and 15 (+). Based on &
record of 500 white noise values. See text for details.

accurately defined is called the critical embedding
dimension n.. The above points have been empha-
sized by Essex et al. (1987) and Tsonis and Elsner
(1990).

We now wish to demonstrate the above by start-
ing with a time series of 500 white noise values.
We know that in this case for any embedding di-
mension d; = n (as long as we use the necessary
number of points for each n). We started with em-
bedding dimension n = 2 and found log N(r,n)as
a function of log r and then we calculated

slope = Alog N(r,n)/Alogr

as a function of logr. If there exists a clearly de-
fined scaling region in the log N(r,n) versus logr
plots then we should be able, on a slope versus log r
plot, to observe a plateau. This plateau will pro-
vide an estimation for the exponent d; for a given
n. Figure 4 shows slope versus logr for n = 2(D),
n = 6(0), and n = 15(x). For n = 2 we observe
that slope is nearly constant at about a value of
two for a wide range of scales. When the scales be-
come too large, saturation indicated by a gradual
decrease of slope is seen. Depopulation is not vis-
ible (at least within the scale range of the figure).
Therefore we may conclude that 500 points are ad-
equate in defining the scaling region when n = 2.
For n = 6 we observe a very different picture. We
see depopulation manifesting itself as many zero
slope values over small scales, large fluctuations
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over larger scales, and saturation over very large
scales. A scaling region can be suggested (indi-
cated by the arrows) but it is not as clearly defined
or as wide as in the case of n = 2. Nevertheless
this small plateau is found at about slope = 5.0,
which is less than the true value of 6.0. Thus an
attempt here to define a scaling region will at best
result in an underestimation of the true value of
the exponent d;. Similar comments can be made
for n = 15; here the difference shows that there is
virtually no way one can define a scaling region.

Figure 5 is similar to Fig. 4 but for n = 4. Simi-
lar comments to those made in Fig. 4 for n greater
or equal to six can be made for Fig. 5. A scaling
region (indicated by the arrows) may be identi-
fied but it will produce a value of d; = 3.5 (which
is less than the true value of 4.0). However, in
Fig. 5b (with 5000 points), a well-defined scaling
region exists with a value of d; = 4.0. It is im-
portant to know that the true scaling region here
is at smaller scales compared to the scaling region
that is identified when 500 points are used where
the true scaling region is masked by large fluctua-
tions.

3.3 Sample size requirements

The above clearly demonstrate what was discussed
previously. We should be very careful not to ex-
ceed the critical embedding dimension that is a
function of the data size. This unavoidably brings
us to the following question: What is a sufficient
number of points N for a given embedding dimen-
sion?

This problem can be approached by assuming
that in all embedding dimensions n less than the
dimension of the object in question, the object
is space filling like uniformly distributed random
numbers in the interval [0,1]. The painful exer-

cise of determining the minimum number of points -

was first tackled by Smith (1988), who concluded
that this number is equal to 42™, where m is the
smallest integer above the dimension of the ob-
ject, which under the aforementioned assumption
is the dimension in which the random numbers are
embedded in. Thus, for m = 4, if N 1s not at
least equal to 3 111 696 no accurate estimate of
d, can be obtained. But as we saw in Fig. 5 ac-
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Fig. 5. a) AlogN(r,n)/Alogr as a function of logr for
embedding dimension 4.
b) As in Fig. 5a but for a record of 5000 white noise values.




curate estimates for m = 4 can be obtained with
as little as 5,000 points. This number is signifi-
cantly lower than 3 111 696. Why this great dis-
crepancy? The only explanation is that the 42™
conclusion is in error. In fact, it has been re-
cently demonstrated (Nerenberg and Essex 1990)
that the data requirements are not as nearly as
extreme. In fact, the minimum number of points
N,in required to produce no more than an error A
(typically A = 0.05n) is approximately (see Tsonis
et al. 1993D) ‘

Npnin o 1021047,

Thus, for n = 4, Npin ~ 1038 ~ 4000 points as
mentioned above.

The aforementioned discussion unavoidably brin-
gs us to the next very important point. Because
of the underlying assumptions all the theoretical
calculations and derivations of the necessary num-
ber of points as a function of embedding dimension
presented up to this point are valid only as long as
the embedding dimension n is less than correlation
~ dimension D,. In addition, it is quite possible that
estimates of the number of points would depend
on the type of the attractor (nonuniform, fractal);
as issue that has not yet been addressed in those
calculations. Moreover, it is not certain whether
or not (and especially for fractal sets) the need
for data increases at the same rate with embed-
ding dimension when n > D,. Experimentation
with known dynamical systems indicates that in
the case even though the need for data may in-
crease it may not be as severe as it is predicted by
the aforementioned formulas! For example, Fig 6a
shows slope versus log 7 plots of a sample size 2000
for an observable from the Hénon map for embed-
ding dimensions 2, 4, 6, 8, 10, and 20. We observe
that for n = 2, d; = 1.25 (which is the Hausdorff-
Besicovitch dimension of the Hénon map). Subse-
quently, we observe that up to embedding dimen-
sion 10, fairly accurate estimates of the correlation
dimension can be obtained. In fact, we do not ob-
serve too much fluctuation or-an underestimation
of d, with increasing embedding dimension. Of
course, eventually (i.e., for n 3> D) fluctuations
may mask any scaling region. The differences with
Fig. 5b which show the same but for a sample of
2000 random numbers are clear and provide some
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evidence that for fractal sets the need for data may
increase at a much slower rate for embedding di-
mensions higher than the correlation dimension of
the attractor. We should point out, however, that
such a conclusion may not be valid for every dy-
namical system or dataset. Do we, therefore, in
cases where saturation is observed at an embed-
ding dimension n, > D,, need N ~ 102+0-4n.
points or just N ~ 102+%-4Da points (again pro-
vided that n, is not much higher than D,)? This
is an open question and of course a conservative
choice would be to consider the requirements for

n,.
3.4 Power-law spectra

In power law spectra the energy is high at low fre-
quencies (large scales) and low at high frequen-
cies (small scales). Since in nature energy is dis-
tributed from the large scales to the smaller scales
it 1s expected that spectra of observables from na-
ture would exhibit something like a power law spec-
tra. Osborne et al. (1986) and Osborne and Proven-
zale (1989) have argued that a certain class of ran-
dom sequences would exhibit a finite correlation di-
mension. This class of random sequences includes
self-affine sequences that exhibit a power law spec-
tra of the form P(fy) = Cf,® for1 < a < 3 and
are commonly referred to as fractional Brownian
motions (fBms), a type of colored noise. In this
case the trail of n-independent realizations (each
one representing one phase space dimension) is
self-similar with a theoretically predicted fractal
dimension equal to 2/(a —1). When the Grassber-
ger-Procaccia algorithm 1s applied to trails or to
trajectories reconstructed from a single sequence
via the method of delays, a finite correlation di-
mension (close to the fractal dimension of the trail)
i1s obtained. Thus they suggested that a finite value
for the correlation dimension cannot be indicative
of a dynamical system with a finite number of de-
grees of freedom. It can only indicate a lower
bound for the actual number of degrees of free-

Thus if the data
in question exhibit power-law spectra of the form

dom, which might be infinite!

P(f) < f~* and the estimated correlation dimen-
sion is approximately equal to 2/(a — 1) then cer-
tain tests must be contucted to make sure that we

are looking at a deterministic process and not at
some fBms.

One of the tests is to investigate the properties
of the autocorrelation function of the data. For
fBms for N - oo the autocorrelation function
scales as C(€) o< £ where £ is the lag (i.e., C(£)
never reaches the value of zero). In addition for fi-
nite N the decorrelation time (defined as the lag at
which C(£) attains some small value close or equal
to zero) is a function of N. One, therefore, can
check the decorrelation time of the original time
series for gradually increasing N. If the decorre-
lation time does not keep on increasing then one
can rule out fBms. Another test is a stationar-
ity test. fBms are nonstationary processes while
chaotic processes are stationary. If over the avail-
able data length the time series is stationary one
again can rule out fBms. If over the available
data the process is nonstationary both the above
tests may fail. In this case an alternative test can
be provided by nonlinear prediction (see the cor-
responding section below).

Before closing this section a point must be made
clear. Because of their “long” memory 1t is very
difficult to obtain points from an fBm that are
truly independent. Therefore a correct application
of the Grassberger-Procaccia algorithm requires ex-
tremely high N and in this case one finds that
D = n for any n as expected from stochastic pro-
cesses (Theiler, 1991). For finite N'’s, however, the
reported by Osborne and Provenzale “anomalous”
scaling is observed. The importance of Osborne
and Provenzale’s observation lies in the fact that
for a finite N (which is usually the case) a natu-
ral process might mimic an fBm, and thus a finite
correlation dimension should be subjected to the
tests outlined above.

4 Estimating Lyapunov exponents

The Lyapunov exponents measure the rate at which
nearby trajectories in phase space diverge or con-
verge. Positive Lyapunov exponents indicate di-
vergence and therefore chaos. In theory the Lya-
punov exponents A; are defined according to:

T
1 d (1
»—A/ dt— In Z)LQ}

T—oo T J, di p;((]).

= lim



= lim
T — o0 T

1. [p;(T)} (3)

pi(0)

Here p;(0) is the radius of the principal axis p; at
{ = 0 of an initial hypersphere of dimension n and
pi(T) is its radius after a long time 7. The di-
mension n is the dimension of the Euclidean phase
space in which the attractor is embedded. There
are many Lyapunov exponents as the dimension of
the phase space.

The estimation of the Lyapunov exponents from
a system of ordinary differential equations is stra-
ight forward and it is based on the fact that the lin-
earized equations which describe the local dynam-
ics involve a Jacobian whose eigenvalues provide
all the exponents (see Tsonis, 1992). In practice
at first we embed the data in some space whose
dimension is sufficient (normally d. > 2D). Then
the reconstructed phase space provides the infor-
mation to estimate the Jacobian by monitoring the
motion in space of selected points and their neigh-
borhoods (Abarbanel and Kennel, 1991).

Because the linearized equation provide the lo-
cal dynamics such an approach provides an estima-
tion of the local Lyapunov exponents. Repeating
the procedure for many points we can obtain an
average picture which will be related to the Lya-
punov exponents of the system. Note that, esti-
mation of the Lyapunov exponents can provide an
estimation of the dimension of the system. Ac-
cording to Kaplan-Yorke conjecture (Frederickson
et al., 1983) the information dimension of a chaotic
attractor, Dy is equal to:

where j is defined by the condition that Zle A >
0 and X?! 11 A; < 0.

Apparently, unlike estimating dimensions here
we need to know a proper embedding dimension
n where the calculations have to be performed. A
proper embedding requires ‘an a priori knowledge
of of the dimension and therefore the estimation of
Lyapunov exponents suffers from the problems as-
sociated with dimension estimation. We still need
a proper delay 7, we still have to worry about ad-

equate sample sizes and correct procedure to ex-
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Fig. 7. An illustration of the principle behind estimating
the embedding dimension using ncarest neighbors (see text
for details).

tract the values of the exponents from experimen-
tal data.

An alternative is provided by a new technique
that defines a proper embedding dimension (Sugi-
hara and May, 1990, Abarbanel et al. 1992). The
basic philosophy is outlined in Figure 7. If the
underlying attractor is assumed to be circle and
we embed the motion in one dimension the points
close to 1 and 3 will be close neighbors. We call
these neighbors false neighbors because in the ac-
tual motion (i.e. in a two dimensional embedding
space) are very far apart. Thus starting withd =1
for each point in phase space we find the nearest
neighbor. From all the available points we then
find how many of those nearest neighbors remain
nearest neighbors as we go to d = 2,d = 3 and so
on. A proper embedding is defined as the dimen-
sion for which the percentage of false neighbors
goes to zero. This is very promising technique and
if the noise of the data is small good proper embed-
ding dimensions can be obtained. Figure 8 shows
the ratio of false neighbors to the total neighbors
for a system that exhibits the two-torus attrac-

tor mentioned in Fig. 1. Note that after an em-
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Fig. 8. Ratio of false neighbors to the total neighbors
of an observable from a dynamical system with a 2-torus
attractor. From this figure we can estimate (correctly) an
embedding dimension of three.

bedding dimension three the ratio remains virtu-
ally unchanged indicating correctly that the proper
embedding dimension is three. Another approach
to define a proper embedding dimension is based
on nonlinear prediction and it will discussed in the
next section.

A final point which we cannot overstress. When
we analyze some natural observed time series we
are actually looking at a continuous process. In-
deed, natural process are governed by some system
of differential equations (flows). The dimension of
any chaotic flow must be at least two. Otherwise
the trajectory will have to be embedded in two
dimensions and due to its continuous looping will
eventually cross itself and afterwards will have to
repeat exactly which is forbidden in chaotic sys-
tems. This is also evident-from the Kaplan-Yorke
conjecture. Since a chaotic system has at least one
positive, one zero and the rest all negative Lya-

. DY .

punov exponents, 7 > 2 and Wl > 0 which
J41

means then D > 2. Therefore a result D < 2

violates the above conjecture.

5 Nonlinear Prediction

While we look for additional tools in the search
for determinism in measured time series, we should
not forget that chaos is deterministic. Chaotic sys-
tems obey certain rules. Their limited predictive
power is due to their sensitivity to initial condi-
tions and to the fact that we cannot make per-
fect measurements. However, before their predic-
tive power is lost (i.e. for short time scales) their
predictability may be quite adequate and possibly
better than the predictive power of linear statisti-
cal forecasting. The philosophy behind nonlinear
forecasting is to explore the dynamics in order to
improve predictions and to identify nonlinearities
in the data. ,

Since we need to explain the dynamics we need
to have the reconstructed attractor. Then we can
begin to think how to improve short-term predic-
tion. If an underlying deterministic mechanism ex-
ists, then the order with which the points appear
in the attractor will also be deterministic. Thus,
if we somehow are able to extract the rules that
determine where the next point will be located in
phase space we will obtain a very accurate predic-
tion. In general, we can assume that the under-
lying dynamics can be written as a map f of the
form:

2({+7T) = fr(2(1))

where in phase space z(t) is the current state and
z(t + T) is the state after some time interval T.
For example, consider the sequence z(t) : 0.12,

1 0.4224,0.4759128,0.094028, 0.3407468, 0.8985536,

0.36462, 0.9266888, ... If we plot z(t) vs =(t + 1)
we find that the points fall on a very well-defined
parabola the expression of which we can easily find.
In fact the sequence is the logistic map zp,41 =
4z,(1 — z,). In cases like that we can completely
define the global dynamics. In reality, however, it
1s impossible to do that simply because we can-
not always visualize the attractor or know a priori
the form of the function f. In such cases a better
approach is the local approximation (Farmer and
Sidorowich, 1987). An illustration of how local
approximation works is shown in Figure 9, where
portions of a trajectory are shown in state space
and a terminal point (present state) is denoted by




Fig. 9. An illustration of how local approximation works.
The present state z(1) and its unknown future value z(1+T')
are represented by open circles. The black dotes inside the
circle define the neighborhood of z(i) in this hypothetical
state space. To make a prediction, we determine an appro-
priate mapping that takes the points in the neighborhood

to some future time T, and then evaluate the mapping.

The solid circles indicate neigh-
bors of the current state, and the arrowheads in-

an open circle.

dicate movement of the neighbors through a local
section of the embedding space. By finding a suit-
able function (linear or nonlinear) that describes
how the neighbors advance, a prediction for the
current state can be made. Since there are infinite
nonlinear functions, the simplest way is to derive a
linear mapping for each time step (i.e. construct f
at each time step). Since the linear mapping may
not be the same at each time step the overall pro-
cedure is not linear. Nonlinear prediction, unlike
other methods for identifying chaos, maximizes the
information in the available data and thus often
works well with small data sets (Sugihara and May,
1990, Elsner and Tsonis, 1992). Calculation of the
correlation dimension, for example, is based on the
estimation of the scaling region which is typically
small thus exploiting only a small subset of the
available points in the phase space. Nonlinear pre-
diction uses all the available data, thus requiring
smaller samples. For that reason, nonlinear pre-
diction has lately become a popular alternative to
dimension estimates (for more information on non-
linear prediction see Tsonis, 1992).

Since we perform nonlinear prediction using the

reconstructed attractor the previous problems of
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Fig. 10. Correlation coefficient between actual and pre
dicted values for one step prediction (r(1)), as a function
of the embedding dimension. The correlation increases and
levels-off at an embedding dimension three which indicates
that this is a proper embedding dimension.

defining a suitable T and an embedding dimension
apply here as well. However according to Sugihara
and May (1990) nonlinear prediction can by itself
provide a may to determine a proper embedding
for the data. The idea is that once a proper em-
bedding has been found the correlation coeflicient
between actual and predicted values, r(t) should
not change. In other words predictability will in-
crease as we approach the right embedding and
after that the result will remain the same. Fig-
ure 10 shows the =(1) (i.e. r(t) for the first time
step prediction) as a function of the embedding
dimension for a time series that has as an attrac-
tor the same torus as in Figs. 1 and 8. Note that
the correlation increases for d, < 3 but remains
unchanged for d. > 3. Here again we find that
the proper embedding 1s three. As a result the
need for estimating the underlying dimension can
be sidesteped.

The third problem, identified as the “fall-oft” (of
predictive power) in Fig. 2, has its source on the
following. Since the predictive power of chaotic
systems is limited one expect chaos to be charac-
terized by a decrease of the correlation between
predicted and actual values as prediction time in-
creases. This property can be used to differenti-

ate between chaos and additive uncorrelated noise
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Fig. 11. Correlation coefficient r(t) between actual and
predicted values for the Lorenz system (solid line) and for
a signal consisting of a sine wave plus noise (dashed line).
The rapid drop of the correlation coefficient with predic-
tion time is a characteristic of chaotic signals. In contrast,
the independence of predictive skill with prediction time of
the sine wave plus noise signal demonstrates that nonlin-
ear prediction is capable of distinguishing between additive
noise and chaos. Note that if there is no noise the predictive
skill will level at r(t) = 1.0. As noise increase the r(t) =
constant level approaches zero.

(Sugihara and May, 1990). Additive noise pro-
duces a fixed amount of error regardless of the
prediction time, as has been demonstrated for de-
terministic maps flows, and data from the natural
world (see Figure 11). If a system is chaotic, then
the decrease of predictive power with prediction
time is equivalent to the presence of a positive Lya-
punov exponent. The decrease or “fall-off” with
time of r(¢) can indeed be used to infer the largest
positive Lyapunov exponent (Wales, 1991).

The “fall-off”, however, may not be a property
of chaotic system only. Random fractal sequences
(fBms) and other type of colored noise also exhibit
a “fall-off”. As it is demonstrated in Tsonis and
Elsner (1992), however, 1 — r(t) for chaos scales
with prediction time according to an exponential
law (Figure 12) and for fBms it scales according
to a power law (Figure 13). Therefore, nonlin-
ear prediction can distinguish not only between
chaos and periodic signals plus noise (or chaos and
pure noise) but also between chaos and fBms, and
possibly between chaos and other types of colored
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Fig. 12. Nonlinear prediction can be used to distinguish
chaotic signals from random fractal sequences.

a) Logarithm of 1 — r(t) against prediction time step, t;

b) logarithm of 1 — r(t) against logt for single realizations
of the = coordinate of the Lorenz system, and the logistic
map.

The simulations show the expected scaling. For short pre-
diction times, scaling is observed in the semi-log plot, in-
dicating that the curve of 1 — r(t) against t curve for the
chaotic signals is exponential.
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Fig. 13. As Fig. 12 but showing single realization results
for two fBms with H=0.3 and 0.5. Here scaling is observed
in the log-log plot indicating that for the fBms the curve
1 — r(t) against t is a power-low curve, as expected.
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Fig. 14. Correlation cocfficients between actusl and pre-
dicted values as a function of future iterations of the logistic
cquation. The initial value used is zo = 0.234889. Com-
parisons are made between the two nonlinear models (ANN
and SIMPLEX) and the linear autoregressive (AR) model.
ANN(1,4,1) refers to an artificial neural network with onc
input node, four hidden nodes, and one output node, and
Simplex(2,1) refers to a simplex model having an embed-
ding dimension of 2 and a lag of 1. AR(12) refers to an
autoregressive model of order 12. The example is chosen to
emphasize that there is more to the evolution of dynamical
systems than autocorrelation (autocorrelation is negligible
in the logistic equation) and that certain nonlincar models
are capable of short-term useful predictions by exploiting
the nonlinear dynamics, even if the system in question is
chaotic.

noise. As has been pointed out, however, by Tsonis
and Elsner (1992) noise in the data may mask the
actually scaling of 1 — r(¢) with prediction time
often making the distinction between chaos and
colored noise difficult if not impossible. Neverthe-
less, nonlinear prediction has provided new alter-
natives to time series forecasting. When nonlinear
structure exists in the data nonlinear prediction
outperforms linear statistical approaches thus pro-
viding better forecasts even when the underlying
dynamics are chaotic as the example in Figure 14
demonstrates.

6 Testing for nonlinearity

The bottom line from the above discussed issues 1s
that many methods and not just one should be em-
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ployed when we search for determinism in observed
data. Dimension estimates should be accompanied
by Lyapunov exponents estimates and by nonlin-
ear prediction. Even then, however, the results
may be inconclusive or challengable. Therefore, no
matter what the approach and/or the results are,
we should have a means to test our results. To
this end over the past decade several approaches
have been developed to test for nonlinearity. The
latest and probably the most effective way is the
method of surrogate data (Theiler et al. 1992).
This procedure calls for the generation of a large
number of random sequences of equal length as the
time series to be tested. The idea is that the sur-
rogate time series should be a non-deterministic
record but similar in appearance to the original
data. One method of surrogate generation is to
preserve the amplitude spectrum of the raw data.
First a Fourier transformation of the raw data is
computed; then each complex amplitude is multi-
plied by e'® where ¢ is independently chosen from
the interval [0,2x]. As long as ¢(f) = ¢(—f) it
is guaranteed that the inverse transform is real.
Finally, the inverse Fourier transform is the surro-
gate time series. The surrogate data have similar
statistical properties such as mean variance etc to
the original data. Their beauty, however, is that
they preserve the autocorrelation structure which
might be present in the original signal but not the
dynamics (if any). An example of surrogate data
is shown in Figure 15. In the past testing the sig-
nificance of dimension estimates etc was based on
the statistical comparison between the signal and
a random sample obtained by “stirring” the orig-
inal signal. Such a process results in surrogates
that have the same mean and variance but not the
autocorrelation structure that might exist even in
otherwise random processes.

Once we have a way to produce such random
processes we can define a null hypothesis against
which the raw data can be tested using a discrimi-
nating statistic. According to the above algorithm
for generating surrogate records, the null hypoth-
esis 1s that the raw data come from a linearly au-
tocorrelated Gaussian process. A variation of the
above procedure where the null hypothesis is that
the raw data come from a monotonic nonlinear

transformation of a linear Gaussian process is also
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Fig. 15. Shown is cight time series. One of them is from
the Mackey-Glass cquation with 7 = 30 which is known
to be low-dimensional and chaotic and the rest are surro-
gate obtained according to the Fourier method. Note the
similarity between all time series. The surrogate here are
random, but have preserved the autocorrelation structure
but not the dynamics of the real data which by the way are
time series (f) (figure of courtesy of Dr. James Theiler).

possible (Theiler et al. 1992). The discriminating
statistic (e.g., Lyapunov spectrum, correlation di-
mension, correlation coefficient between predicted
and actual values as a function of prediction time)
is computed for each surrogate time series and its
distribution approximated. If the discriminating
statistic for the real data is significantly outside the
mean of the distribution based on the surrogates,
then the null hypothesis of linearly correlated noise
is rejected and it can be concluded that significant
nonlinear structure is present in the record. For a
study case on surrogate data see Elsner and Tsonis
(1993).

7 Conclusions

This work was designed to address some of the cur-
rent issues involved in the search for determinism
in observed time series. We have explained some
ways according to which the algorithms might be
working and at the same time we have demon-
strated the existence of certain weaknesses. We
like to conclude that special care should be consid-
ered when analyzing data. Preferably, not just one
but all possible approaches should be considered,



and the results should be compared collectively.
We suggest that the sensitivity of the conclusions
be tested by repeating the analysis for various seg-
ments of the time series, for various 7’s and various
embedding dimensions. Finally a proper test for
nonlinearity should be administrated. The theory
of dynamical systems and chaos has provided us
with new tools in analyzing observables. Whether
or not low-dimensional attractors exist in nature
is still debatable. Thus it is very critical that we
apply these new theories with the utmost of care.
Otherwise we may damage a theory that right now
shows a great deal of promise.
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