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NONLINEAR forecasting has recently been shown to distinguish
between deterministic chaos and uncorrelated (white) noise added
to periodic signals', and can be used to estimate the degree of
chaos in the underlying dynamical system®. Distinguishing the
more general class of coloured (autocorrelated) noise has proven
more difficult because, unlike additive noise, the correlation
between predicted and actual values measured may decrease with
time—a property synonymous with chaos. Here, we show that by
determining the scaling properties of the prediction error as a
function of time, we can use nonlinear prediction to distinguish
between chaos and random fractal sequences. Random fractal
sequences are a particular class of coloured noise which represent
stochastic (infinite-dimensional) systems with power-law spectra.
Such sequences have been known to fool other procedures for
identifying chaotic behaviour in natural time series’, particularly
when the data sets are small. The recognition of this type of noise
is of practical importance, as measurements from a variety of
dynamical systems (such as three-dimensional turbulence, two-
dimensional and geostrophic turbulence, internal ocean waves,
sandpile models, drifter trajectories in large-scale flows, the motion
of a classical electron in a crystal and other low-dimensional
systems) may over some range of frequencies exhibit power-law
spectra.

In the past, the identification of chaotic dynamics from time
series relied heavily on the estimation of the dimension of the
underlying attractor’~, but this approach has certain drawbacks.
First, the algorithms involved”® require a large number of data
points, which are often not available. Second, even when enough
points are available, a finite dimension may not be indicative
of deterministic chaos. For small data sets, random fractal
sequences (fractional brownian motions) may show an
anomalous scaling which can be interpreted as a finite
dimension®'°. Fractional brownian motions (FBM) are random
processes and thus are dictated by an infinite number of degrees
of freedom. They have power spectra of the form P(f)= Cf ¢,
where a =2H +1 with 0< H < 1. The exponent H is related to
the fractal dimension, Dy, of the trail of the fractional brownian
motion through D;=1/H. Irrespective of the relevance of such
sequences to the natural world, these drawbacks mean that the
methods have often required subjective judgement about
whether an attractor of a given dimension exists, and other
approaches have been sought.

One of these approaches is nonlinear prediction''™"* which
is becoming indispensable in the study of chaotic dynamical
systems. The idea behind using nonlinear prediction as a sig-
nature of chaos is simple. Chaotic systems obey certain rules.
The limited predictive power of chaotic dynamical systems is
because they are sensitive to initial conditions and because we
cannot have perfect measurements (which require an infinite
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amount of information). One would therefore expect chaos to
be characterized by a decrease of the correlation between predic-
ted and actual values as prediction time increases. This property
can be used to differentiate between chaos and additive uncorre-
lated noise. Additive noise produces a fixed amount of error
regardless of the prediction time, as has been demonstrated' for
deterministic maps and data from the natural world (the same
conclusions were reached by Wolpert and Miall'* using the same
data and a neural network as the prediction method). If a system
is chaotic, then the decrease of predictive power with prediction
time is equivalent to the presence of a positive Lyapunov
exponent. The decrease with time of the correlation between
predicted and actual values can indeed be used to infer the
largest positive Lyapunov exponent®. Those correlation func-
tions do not require extremely large samples and have thus
become a popular alternative to dimension estimates.

But how does nonlinear prediction perform when it comes to
random fractal sequences? If random fractal sequences ‘fool’
the algorithms that characterize the structure of chaotic attrac-
tors, they may also fool prediction approaches whose signatures
are based on the existence of those structures. In fact, as we
will show, the correlation between predicted and actual values
of fractional brownian motions also decreases with prediction
time. In this case nonlinear prediction may have the same
drawback as dimension estimates, and therefore may not be a
definitive way of identifying chaos. Sugihara and May' specu-
lated that the relationship between correlation and prediction
time might scale differently but did not offer a solution to this
central problem. Here we present theoretical arguments together
with computer simulations that settle this issue.

If the predicted value at some time ¢ is assumed to be a
random variable x, and the actual value a random variable y,,
then the Pearson’s correlation coefficient between these two
distributions, r(t), ranges in magnitude between zero and one
for uncorrelated and identical distributions, respectively. The
correlation coefficient is defined as

r(1) = ((x,y) = (xXy)/ o (x)o(y,) (1)

where the triangular brackets denote the average over a series
of predictions and o denotes the standard deviation. For station-
ary chaotic signals the correlation can take the form?

r(1)=1=(s%(0) e**")/20%(y,) (2)

where 5(0), o(y,) and K are positive constants. For stationary
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FIG. 1 Nonlinear prediction can be used to distinguish chaotic signals from
random fractal sequences. a, Logarithm of 1 — r(t) against prediction time
step, t; b, logarithm of 1 — r(t) against log t for single realizations of the x
coordinate of the Lorenz system, and the logistic map. These simulations
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processes o(y,) is considered independent of the prediction
time, t. Equation (2) dictates that the correlation should decrease
exponentially with prediction time. Chaotic systems generally
have positive Lyapunov exponents and exponential divergence
of nearby trajectories.

If x is a FBM then x, = N(0, «ct*")—that is, it is normally
distributed with zero mean and a variance proportional to >/ —
and cov (x,, y,) =(x,y,). In nonlinear prediction it is common
to consider that

y,=f<Z W,x,f,> =f(z) (3)

where f is some nonlinear function ranging between zero and
one, and w; are coefficients. If we expand f into a Taylor series
we get
(X, y:) = cov (x,, y,)
=cov (x,, f(0)+2,£(0) + 22 f(0)/2+....)
= cov (x,, f(0))+£(0) cov (x,, z,)
+£"(0) cov (x,, z3)/2+. ... (4)
where f(0), f'(0) and f"(0) represent some constants. If we
consider only terms of second order or lower, then according
to the problem in hand we have cov(x, f(0))=0 and
cov (x,, z7) =E(x,z,z,) =0 (ref. 15). This allows us to write
equation (4) as
(x,yy=Acov (x, z,) (5)
where A= f'(0). Recalling that if X = N(0, min(t,, t,)) then
cov (X,;, X,5) =min (t,, t,) (ref. 15), and considering equation
(3) we have

(x, )= A cov (x,, ) W.xm>

:AZ w; COvV (X,, Xl*l)
AT w, min[sz,(t—i)zH]
=AY w(t—i)" (6)

Consequently, the correlation coefficient takes the form

. 1 \2H
r(t)=BY wi(1-i/1) (7)
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show the expected scaling from the theoretical arguments developed in the
text. For short prediction times, scaling is observed in the semi-log plot,
indicating that the curve of 1 —r(t) against t curve for the chaotic signals
is exponential.
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FIG. 2 As Fig. 1, but showing single realization results for two FBMs with
H=0.3 and 0.5. Here scaling is observed in the log-log plot indicating that

where B is some constant. Considering that in our case
cov (x, z3) = E(x,z,.2,2,) =3 cov (x,, z,) Var (z,) and that
cov (x,, z7) = E(x,z,z,2,2,) = 0, addition of the next two higher-

order terms in the expansion modifies equation (7) to

r(t) = ':B+C<2 wi(t—i)*+y ¥ wiw,(t~j)2”>:|

<J

XY wi(1—i/t)*H (8)

where C is some other constant. Equations (7) and (8) do not
include any exponential terms. They represent curves deter-
mined by a synthesis of power-law terms. This is a direct con-
sequence of the power-law characterization of FBM. Including
additional terms in the expansion of f does not change this
property. The above arguments, and especially equations (2)
and (7) or (8), show that we should expect differences in the
scaling of the correlation coefficient with prediction time
between chaotic signals and FBMs. For chaotic systems the
logarithm of 1—r(t) should be a linear function of prediction
time step ¢, and for FBMs it should be a linear function of log .

These scaling differences are emphasized by computer simula-
tions. Figure la is a plot of log (1—r(t)) against ¢, and Fig. 1b
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FIG. 3 Nonlinear prediction on a time series of the Southern Oscillation
Index. & log (1—r(t)) against t; b, log (1 —r(t)) against log t. For short
prediction time steps, scaling is observed in the semi-log plot indicating
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for the FBMs the curve of 1 — r(t) against t is a power-law curve, as expected.

is a plot of log (1 —r(t)) against log t showing single realization
results for the x coordinate of the Lorenz system, and for the
logistic map x,.,=4x,(1—x,). The integration step for the
Lorenz system was 0.03. The prediction method was similar to
that used in ref. 1, which is a simple variant of the Farmer and
Sidorowich interpolative approach''. For each example we take
1,000 values from the corresponding time series, use the first
500 as a database, and make predictions on the last 500 values.
Correlation coefficients are thus based on sample sizes of ~500.
Note that for the Lorenz time series, the prediction time step is
the integration step. Figure 2 is similar to Fig. 1 but shows single
realization results for two FBMs with H =0.3 and 0.5. In our
simulations the embedding dimension is always 2D+ 1. The
time delay used to define the coordinates of the embedding
space was 7= 1. The results show a decrease of the correlation
coefficient with prediction time in all cases. In accordance with
our theoretical arguments, however, Figs 1 and 2 indicate that
for short prediction times, log (1—r(t)) is a linear function of
t for the chaotic signals and a linear function of log t for the
FBMs. Although the role of 7 in nonlinear prediction needs to
be better understood, preliminary experiments with different
values of 7 indicated that the expected scaling is preserved;
other prediction techniques, such as neural networks'?, give
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that the curve of 1 —r(t) against t is exponential, and thus the time series
is a chaotic signal.
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similar results but seemed to yield less accurate predictions than
the interpolative approach.

For periodic signals with additive uncorrelated noise, the
correlation coefficient is independent of the prediction time. A
fall in the correlation with prediction time does not indicate a
periodic signal with additive noise, but it may indicate a chaotic
signal with or without noise (in the chaotic case, additive noise
produces a constant offset in the correlation which would not
obliterate the fall-off). Our work provides the means to go one
step further and decide whether such a fall-off is indicative of
a random fractal sequence. A direct approach will be to check
the scaling behaviour of log (1 —r(t)) against 7 and of log (1—
r(t)) against log t. For example, Fig. 3 shows results from a time
series of the Southern Oscillation Index, which is derived from
the mean sea-level pressure difference between the Tahiti and
Darwin stations. The record is 1,248 values long (monthly values
from January 1883 to December 1986) and is related to the El
Nifio which is hypothesized to be chaotic'®. A dimension of
around five has been suggested for this type of data'’. Figure
3ais a semi-log plot and Fig. 3b a log-log plot of 1 — r(¢) against
t. The solid lines indicate best fits. For the semi-log plot the best
fit is linear, whereas for the log-log plot it appears to be non-
linear. According to our theory this indicates that the time series
is indeed chaotic. In some cases, noise, data imperfections and
data length may make the identification of the actual scaling
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difficult. In such cases nonlinear prediction could be used
statistically. For example, if a time series is suspected to be
a FBM, then prediction results could be compared with
the average prediction properties of the family of FBMs in
question. O
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