Ann. Geophysicae 10, 309-322 (1992)

© EGS - Springer-Verlag 1992

Annales
(Geophysicae

5

Evidence for strange attractor structures in space plasmas

G. P. Pavlos !, G. A. Kyriakou !, A. G. Rigas’, P. L. Liatsis !, P. C. Trochoutsos ', and A. A. Tsonis *

! Department of Electrical Engineering, Demokritos University of Thrace, 67100 Xanthi, Greece
2 Department of Geosciences, University of Wisconsin, Milwaukee, WI 53201, USA

Received July 2, 1991; revised December 23, 1991; accepted January 8, 1992

Abstract. In this study we apply modern methods for
the search of strange attractor structures with low di-
mension to space plasmas. Together with an estima-
tion of the correlation dimension, we include in our
methods an estimation of the largest Lyapunov expo-
nent and the development of reliable criteria for the
exclusion of pseudochaotic dynamics caused by col-
ored noises. The use of these methods in the analysis of
magnetospheric and solar wind data gives strong evi-
dence for low-dimensional chaotic dynamics. In+par- =
ticular, our findings indicate a magnetospheric strange
attractor with a fractal dimension of about 3.5 and a
solar wind strange attractor with a fractal dimension
of about 4.5.

Introduction

The recent development of chaotic dynamics of non-lin-
ear and dissipative systems (Eckman and Ruelle, 1985)
provides us with a new tool which permits the distinction
between deterministics and random noise. Thus, in many
physical processes, the infinitely quasiperiodic spectrum
of excited models must be replaced by new concepts such
as non-negative Lyapunov exponents, information di-
mension, correlation dimension, etc. The unifying con-
cept in all these methods is the strange attractor structure.
In chaotic dynamics, the evolution of a physical system in
phase space, once transients die out, settles on a subman-
ifold which is a fractal set (the strange attractor) of zero
volume (in some appropriate phase space). The motion of
the dissipative system in this limited region of phase space
may be unstable because of exponential divergence of
initially nearby orbits. This exponential separation can be
quantified by the Lyapunov exponents. Because of these
characteristics, even though a chaotic system can be de-
scribed by a low-dimensional deterministic system, its
long-term predictability is not guaranteed.
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One of the most important goals in space physics is to
understand how basic elements work in the solar wind-
magnetosphere-ionosphere interaction. The main mani-
festations of this interaction are magnetospheric sub-
storms, as a collective and global response of the magne-
tosphere and ionosphere to a set of conditions in the solar
wind. Characteristically, we mention typical events dur-
ing a substorm expansive phase such as a sudden bright-
ening of equatorward aurora, the intensification of field-
aligned currents and of the westward-eastward auroral
electrojet currents, plasma sheet thinning, an eartwarth
injection of energetic electrons and ions, energetic particle
bursts in the magnetotail, high-speed bursts of earth-
ward-tailward plasma flow (500—1000 m/s) in the central
plasma sheet, the intensification of magnetohydrodynam-
ic (MHD) waves in different regions of the magneto-
sphere, and plasma turbulence (McPherron, 1979; Ros-
toker, 1987; Pavlos and Sarris, 1989; Pavlos et al., 1989).

The motion of the magnetospheric state on a strange
attractor was previously considered as an explanatory
paradigm for all magnetospheric dynamics (Pavlos,
1988). Baker et al. (1990) showed that the motion of the
magnetospheric state throughout a three-dimensional
chaotic attractor, in analogy to Shaw’s faucet model
(Shaw, 1984), could successfully model and explain many
of the observed substorm characteristics. Vassiliadis et al.
(1990) and Shan et al. (1991) used AE index measure-
ments to estimate magnetospheric chaos. However, their
results are contradictory for the correlation dimension of
the AE index.

The solar wind is the continuous expansion of solar
corona plasma into interplanetary space. It can be de-
scribed as a magnetization fluid with complex fluid and
magnetic structures, such as high speed streams, evolving
shock waves, the heliomagnetic neutral sheet, magnetic
loops or clouds, magnetic field fluctuations and irregular-
ities (Hundhausen, 1972). It is obvious that the solar wind
and the magnetospheric-inospheric medium constitute
highly turbulent and noisy physical systems, with notable
backgrounds of broadband spectra. Burlaga (1991) stud-
ied large scale magnetic field fluctuations and found a
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multifractal structure of the interplanetary magnetic field.
However, this result was explained mainly as “colored
noise”.

Here, we extend previous studies by using a more com-
plete form of chaotic analysis. In particular, we expand
the correlation dimension analysis used in the works of
Vassiliadis et al. (1990) and Shan et al. (1991), by comput-
ing not only the correlation dimension, but also the larg-
est Lyapunov exponents and the three-dimensional phase
portraits for different kinds of magnetospheric data.
Moreover we develop some new criteria to eliminate the
possibility of pseudochaotic dynamics, which could be
caused by noisy data exhibiting a power spectrum of the
form f ~“ All these extended methods of chaotic analysis
are also applied in the case of solar wind data. Thus, by
using chaotic analysis in its general form, we present
strong evidence for the existence of magnetospheric and
solar wind strange attractor structures with fractal di-
mensions of about 3.5 and about 4.5 respectively.

Data analysis
Analysis in the time and the frequency domain

The theory of nonlinear dynamical systems provides a
new way of analyzing a nonperiodic time series in order
to distinguish between ‘‘deterministic”’ and “‘random”
physical signals. The power spectrum S (w) of a scalar
signal x(tf) can show whether a system is periodic or
quasiperiodic (with basic frequencies w,, ..., »,) but it
cannot provide any information for a broadband spec-
trum. Only in the extreme case of a random signal which
is white noise the power spectrum density is independent
of the frequency. A chaotic deterministic signal x (t) ex-
hibits a power spectrum with a continuous part indicat-
ing that the time evolution of the quantity x (¢) is disor-
dered and erratic (Farmer, 1981; Eckman, 1981). Also the
spectrum analysis does not explain whether the broad-
band component of a spectrum is caused by an quasiperi-
odic attractor (i.e. a torus T* of sufficiently high dimen-
sion k), or by a low dimension chaotic attractor.

The same thing happens with the autocorrelation coef-
ficient

_CQ)
oy

where

(1)

Cl)=<Lx(t+1)x (1)) —{x(t+ 1> <{x (1)),

which, according to the Wiener-Khintchine theorem, is
the Fourier transform of the power spectrum. The auto-
correlation coefficient remains nonzero (as the lag time t
tends to infinity) for a periodic or quasiperiodic signal,
but tends to zero as the lag time increases for a determin-
istic random or stochastic random nonperiodic signal
whose power spectrum includes a continuous part.

Strange attractor analysis

The embedding theorem of Takens (1981), the fractal di-
mension of the strange attractor and the positive Lya-
punov exponents are the basic tools for the experimental
estimation of the chaotic dynamics of an observed physi-
cal system. According to Takens, if the dynamics of a
complex system (in our case, the magnetosphere or solar
wind) can be reduced to a k-dimensional flow described
by the differential equations

dx(t)/dt = F(x(t),4,),

where x(f) = {x, (t),x,(t), ..., x, (1)} is the vector of the
observable dynamic variables of the system and 4, are the
control parameters, then this flow and some of its proper-
ties can be experimentally reconstructed from the ob-
served time series of a single observable dynamic compo-
nent x(t). From a discrete time series, x, = x(t,),
n=1,2,..., N, measured experimentally, the vector con-
struction

E(t)={x(t),x(t,+1),...,x[t, + 2D + 1)1]}

gives a smooth embedding of the flow in a (2D + 1)-di-
mensional phase space. The reconstructed trajectory &(t,)
provides a topological approximation to the D-dimen-
sional attractor in the real phase space (assuming that an
attractor exists).

The reconstruction time 7 is a suitable delay parame-
ter, often taken to be equal to the decorrelation time of
the signal x,. The experimental estimation of a strange
attractor and its fractal dimension can be obtained using
the correlation integral C (r; m) proposed by Grassberger
and Procaccia (1981). This quantity is defined for a m-di-
mension embedding space of the experimentally-recon-
structed trajectory

E(t) = {x(t)x(t; + 1) ..., x[t; + (m = 1)1}
by the equation

C(r;m)= lim — {the number of pairs of points £(t,)
Mo and &(t)) such that || & —&;|| <r}.

The correlation dimension D of the attracting subman-
ifold in the reconstruction phase space is given by the
equation

L d(In C(r;m))
D= lm = inn

where m denotes the embedding dimension. This quantity
weights a volume element in the attractor according to
how often a trajectory is found in it (Schuster, 1989). In
data analysis, where random noise is present, there is a
statistically significant scaling region (r, — r;) extending
from r, (minimum value) to r, (maximum value), where
the slope d(InC (r;m))/d(Inr) remains constant and a
plateau is observed. This gives a real measure of the cor-
relation dimension if the embedding dimension m is suit-
ably large. For r smaller than r,, we have a large scatter
of points due to poor statistics, while for r larger than r,
there is a deviation from a constant slope due to nonlin-
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ear effects. Thus, for the case of a chaotic signal (exhibit-
ing a strange attractor), there is a saturation of the
slope d(In C(r; m))/d(Inr) according to the power law
C (r; m) oc ¥, which is true for the scaling region with no
change of the slope D and for embedding dimensions m
higher than-some embedding dimension m,.

If the observed time series x (t,) is purely random with
no systematic informational effect, there is no such satu-
ration of the correlation dimension, and C (r;m) oc r™ as m
increases. The existence of a scaling region with a mean-
ingful plateau depends greatly on the amount of data
(time series length). Smith (1988) had argued that the min-
imum number of independent data points required (N,,;,)
is of the order of N = 40P. Recently it has been estimated
that, in cases where an attractor of dimension S exists, a
N, is given by N = 10@*%4D (Nerenberg and Essex,
1990). Another tool in searching for evidence about the
existence of strange attractors is the Lyapunov exponents,
which are defined as the long-term evolution of the axes
of an infinitesimal sphere of states in phase space. For
chaotic systems, neighbouring orbits in phase space di-
verge exponentially, a property known as sensitivity to
initial conditions (Parker and Chua, 1987). According to
this, any dynamic system containing at least one positive
Lypunov exponent is defined to be chaotic. The magni-
tude of the positive exponent gives the scale on which the
dynamics of the system become unpredictable. Here we
followed the work of Wolf et al. (1985) to obtain an esti-
mation of the largest Lyapunov exponent, L ., which is
defined by the relation

L = (1t — 1) T, 1085 (L (/L)

L(t;) denotes the distance which separates two nearby
trajectories in the reconstructed phase space following M
steps on the fiducial trajectory. The previously described
chaotic analysis of a real time series in the estimation of
the correlation dimension and the largest Lyapunov ex-
ponent runs into some difficulties which partially weaken
the efficiency of our analysis for the experimental study of
chaos. Osborne and Provenzale (1989) studied colored
noise time series described by

M/2
X(t)= > C,cos(wt;+ @), i=1,....M,

i=1
where the phases ¢, are randomly distributed on the in-
terval [0,2 ] and C, are constants related to the power
spectrum P (w,) by

2n 17]4/?

These random time series have power spectra P (w) of the
form @ ~* and show low-dimensional chaos, with the cor-
relation dimension D related to a through the relation
D =2/(a—1). An obvious step in our study of space
plasma time series is to compare the chaotic characteris-
tics of real time series with the pseudo-chaotic character-
istics of colored noise time series. This has led us to the
development of some criteria for the distinction between
noisy and chaotic behaviour of real data.

In the following we apply the above methodologies to
four kinds of data:

(i) The AE index with one-minute time resolution.

(ii) In situ magnetic field measurements in the magnetotail
with 1-s time resolution made by the Goddard Space
Flight Center (GSFC) fluxgate magnetometer on board
the IMP-8 spacecraft.

(iii) Hourly averaged interplanetary plasma proton tem-
perature (T) and magnetic field (B) measured in situ at
1 AU.

Magnetospheric low-dimensional chaotic dynamics

Chaotic analysis of the AE index
and the plasma sheet magnetic field time series

Figure 1a shows the time series for the AE index data
measured during January 1985, the corresponding auto-
correlation coefficient and the power spectrum. During
roughly 333 hours (20 000 min) of AE index measure-
ments, we observe a variety of strong and weak sub-
storms. The duration of a substorm event is about 30—
60 min, while, for the entire period, more than 200 dis-
crete substorm events are included. The autocorrelation
coefficient shown in Fig. 1b (solid line) drops to lower than
1/e of its maximum during the first 100 min of lag time,
while its first zero is observed at 1900 min of lag time. The
curve shown by stars in the same figure corresponds to
the autocorrelation coefficient of a colored noise with the
same correlation dimension (3.5) as the AE data. The
decrease in the autocorrelation coefficient of the colored
noise for small lag times happens slowly, in contrast to the
AE autocorrelation coefficient which decreases abruptly.
In particular, the AE autocorrelation coefficient decreas-
es to 1/e of its initial value after about 100 min, while the
same decrease for the colored noise data is observed after
about 500 units of lag time (min). Moreover, the decorre-
lation times for the AE and colored noise time series are
different, about 2000 and about 1400 respectively. Fig-
ure 1c shows the power spectrum of the AE time series.
All the spectra shown were smoothed by using a Parzen
window (Brillinger, 1981). The spectral density reveals a
power law P(f)oc f 7% with a broadband form for fre-
quencies f > 10~ %5 Hz. The estimated value of the expo-
nent a is 1.9 + 0.05 (see Fig. 1¢). Figure 2a shows the
logarithm of the correlation integral C(r;m) against the
logarithm of r for a reconstructed phase space with em-
bedding dimension m=4-7. The best scaling C (r; m) oc r°,
for the AE time series was found when a delay time of
150 min was used in the reconstruction of the state vec-
tors X(t)={X(®), X(t+71),..., X[t +(m—1)1]}. Fig-
ure 2b shows the corresponding slopes 4 In C (r;m)/4 In(r)
against In (r). It can be observed that, for m > 4, the slope
over the scaling region (plateau region) In (r) < 4 remains
constant at a D of about 3-3.5. For embedding dimen-
sions m < 4, the slope increases as m increases. The satu-
ration value of the slope D = 3—3.5 was found to be in-
variant under a change in the number of points, N, of the
used time series. Testing with different values of N (5000—
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Fig. 1. a AE index time series with 1 min time resolution. b The
autocorrelation coefficient of the AE time series and the autocorre-
lation coefficient of a colored noise with fractal dimension D ~ 3.5,
¢ the power spectrum of the AE time series

30 000) justified the assertion of N, being 10?*0-40P,

Figure 2¢ summarizes the results of the correlation di-
mension analysis. It shows the scaling exponent of the
correlation integral as a function of in for the AE data
(stars) and a random sample (open stars) of the same size
as the AE sequence. The random sample was constructed
by randomizing the original AE sequence. This was done
by using a subroutine which generates random numbers.
It is clear that, for the random sample, there is no satura-
tion of the scaling exponent, while with the AE index data
there is a saturation at a D of about 3.4.

During days 280—281 in 1974, the spacecraft IMP-8
was traversing the earth’s magnetotail at a distance of
about 40 Re, remaining in the plasma sheet for some time.
This region is known to be strongly turbulent, especially
during substorm events (Pavlos and Sarris, 1989; Pavlos
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Fig. 2. a The correlation integral C (r;m) of the AE time series for
embedding dimensions m = 2,3,4,5, b slopes 41n C (r;m)/AInr for
m = 3,4,5, ¢ the scaling exponent as a function of the embedding
dimension m for the AE data (stars) and the random data (open
stars)

etal., 1989). In situ measurements of the plasma sheet
magnetic field B revealed a strongly erratic character, as
we show in Fig. 3a. In the plasma sheet, the magnetic field
was less than 20 nT, but frequently the spacecraft moved
far from the plasma sheet to the near lobes where B ex-
ceeded 20 nT. The length of this magnetic field time series
N is 9000 points. Figure 3b shows that the first zero value
of the autocorrelation coefficient is at 500 s, while a 1/e
decrease is observed after 10 s. These characteristic values
are remarkably different for a colored noise (the curve
shown by squares) with the same fractal dimension as
the B data. As for the power spectrum shown in Fig. 3¢,
we can distinguish two regions of frequencies with dif-
ferent power law exponents. For frequencies under
10~ -3 Hz, ais about 1.25 + 0.8 and for frequencies above
1073 Hz, a is 0.5 + 0.3. Figure 4a—c presents the cor-
relation dimension analysis for the magnetotail magne-
tic field. It is clear that there is a saturation value
for the slope D = AlnC(r;m)/AIn(r) ~ 3.5 at the scal-
ing region AlIn(r) ~(—2) —(1.5). The best delay time,
7, used for the reconstruction of state vectors {B(t),
B(t+1),...,B[t+(m—1)1]} is 10s. For random data
(open squares) no saturation is observed.
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Fig. 3a—c. Same plots as in Fig. 1 for the magnetotail plasma sheet
magnetic field (PS B-field) time series

Figure 5 shows an estimate of the largest Lyapunov
exponent, L, , for the AE time series (Fig. 5a) and for the
magnetotail field measurements (Fig. 5b). For the AE
data, L, stabilizes at 0.23 bit/min, when the evolution
time step in Wolf’s algorithm is 3, andat 0.1 bit/min when
the evolution step is 8. In the magnetic field case, L,
stabilizes at 0.4 bit/sec and 0.1 bit/min respectively.
Figure 5c showed the estimate of L,,, for a colored noise
time series having the same correlation dimension with
the AE and B field data. It is obvious that the L_,, of the
colored noise data is approximately 10 times lower than
the L, of the real data. Also, for the colored noise time
series there is a very small difference between the Lya-
punov exponents-obtained for evolution time steps of 3
and 8. The variations AL, are approximately: a) 0.014
for the colored noise; b) 0.14 for the AE time series; and
¢) 0.3 for the B-field time series.

L L T 1T 11 11T T
]a ]
-4.00 - -
-~ N 4
£ 4 4
< 1 ]
o 4 4
) s ,
[y - -
| 4 4
-9.00 .
4 PS B-Field .
e 617 -
714'®® T 1T TrrrrruvrrorT T 1T 1 1 11T
-2.50 -0.50 1.50 3.50
LnCr)
38.8@_ T T T T T T T T T T 6T T \;,,H
1b ic
7 ~5.00 Ei
] PR o
] 5
] a
] x 4.00 a E
20.00 - @ I JE
.00 o N
] ?
@ 4 ~ 3.00 ® 3
a ] S
o B o
2 ] $
w 1 2.0 - -
10.00
1 109 e g Panesaties -
] embedd lng dlmens lon
I *ﬂ
T . A e e i s e S
-3.00 ~-1.00 1. 3.00
LnCr)

Fig. 4a—c. Same plots as in Fig. 2 for the plasma sheet B-field time
series obtained for embedding dimensions m = 2,3,4,5,6

Discussion

The low fractal dimension of 3.5 calculated for the AE
and the magnetotail magnetic field data, as well as the
positive values for the largest Lyapunov exponent in both
time series, strongly support the existence of a strange
attractor structure in magnetospheric dynamics. This
supposition can be further strengthened by noting the
following characteristics of chaotic dynamics discussed
previously:

a) The autocorrelation coefficient of the real time series
(AE and magnetotail B field data) quickly drops to 1/e of
its maximum, in contrast to a colored noise time series
with the same fractal dimension as the real ones, which
shows a very slow decrease in the autocorrelation coeffi-
cient.

b) The Lyapunov exponents, L, , of the AE and B field
data stabilize at positive values which are one order of
magnitude higher than the corresponding L, of the col-
ored noise data. Also, the variation AL, , which corre-
sponds to values of L, estimated with different evolu-
tion steps (3 and 8) for the AE and B field time series, it
approximately 10—30 times higher than the correspond-
ing AL, for the colored noise time series.

¢) The power spectra of the AE and B field data follow a
power law P(f)oc f ™% with o being roughly 1.9 + 0.05



314 G. P. Pavlos et al.: Evidence for strange attractor structures in space plasmas

LI T B O B B

O e e B L L
Ja ]
?04 - AE Index ]
€ N Evolution time step=3 q
~.0.3 ]
= ] I ]
f— ! P— Ve ———— h
0.2 W Zhnlint -
x ]
502 ]
£ ] ]
— o1 - [ -
] PPN ]
] Evolution time step=8 7]
[ o o s S e e s e e O L B L L L L
0 500 1000 1500 2000
Evolution time (min)
L0 B e o o ot B e e e L L B B
1b ]
i PS B-Field
0.8 — _
— 4 ]
9 - . . -
5 ] L Evolution time step=3 ]
\ -
= N
505 B
= ] 4
- ] — A
o ] N
E -
5 |
0.3 — _
4 Evolution time step=8 i
O TT T T 11T 11T ‘ TT T rrrrrrT ‘ TT T 11T 1T 11T ‘ LI B S B R B B | [ T T
2000 4000 6000 8000
Evolution time (sec)
0100 =TT T T T T I T I T T T AT AT T T T T ERERERRARRRRERARRRERE
Jc ]
4 Noise |
“» 0075 Colored No 1
= i
C - -
35 - 4
\ 7 — . L. 7
= 0.050 Evolution time step=3 7
=2 ] ‘\ ]
5 3 e ]
e —— n
£ 0.025 - 1
3 ] ]
Mgy e e T T |
B o Evolution time step=38 E
6000

0 T T T T T T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000

Evolution time
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evolution steps as a function of the evolution time for a the AE time
series, b the PS B-field time series and ¢ a colored noise with similar
fractal dimension to the AE and B-field data (3.5)

for the AE data and roughly 1.25 + 0.1 for the B field
data. If we suppose that the power law profile of these
spectra is mainly caused by colored noises of the form
studied by Osborne and Provenzale (1989), then the cor-
responding correlation dimensions should be about
2.2 +0.2 and 8 + 2 respectively. However, these values
are quite different from the correlation dimensions of 3.4
and 3.6 found above.

d) The correlation dimensions obtained by using AE data
taken on earth and B field data taken in situ, in the plas-
ma sheet 40 Re from the earth, are almost identical, being
3.4 and 3.6 respectively. This is an impressive similarity.

The characteristics (a) and (b) are in accordance with
a sensitivity to initial conditions characteristic of a system
evolving on a strange attractor structure. According to
this principle, the displacement L(t;) of two nearby orbits
quickly increases for small values of the evolution time

a MAGNETOTAIL MAGNETIC FIELD

B(t+21)

!

AE INDEX

—_—
—
—

Fig. 6a—c. Three-dimensional phase portaits for: a the magnetotaill
magnetic field time series, b the AE index time series and ¢ a colored
noise with similar fractal dimension to that of the magnetospheric
data

step At =t,,, — t; (t-evolve of the Wolf et al. algorithm,
since L(t)) ~ e* 1) L (t)). In contrast, for large values of
the evolution time the trajectories on the strange attrac-
tor converge and the estimated values of L, . are low.
This enables us to explain the big difference between vari-
ations (4L ,,,,) in the Lyapunov exponents when the evo-
lution time step changes in both real and colored noise
data. Qualitative evidence for a supposed magneto-
spheric strange attractor is also given by three-dimen-
sional phase portraits of AE and PS Bfield data presented
in Fig. 6a and b, while Fig. 6¢ shows the three-dimen-
sional phase portrait of a colored noise with an a of 1.5.
These portraits include 3000 reconstructed 3-dimensional
vectors. For their construction we used a time delay equal
to the decorrelation time for each time series. It is obvious
from these pictures that, in the case of colored noise, we
observe a random Brownian motion. In contrast, for real
data we have a rich structure which possibly corresponds
to the three-dimensional projection of a smooth orbit
traced in a phase space with 2D + 1 dimensions.
Although the above results strongly indicate a magne-
tospheric strange attractor, the possibility of a colored
noise theoretically remains open until a reliable model
with chaotic dynamics can be obtained for magneto-
spheric dynamics. However, it is important to stress here
that the physical meaning of colored noises with low-di-
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mensional chaotic dynamics profiles could be under dis-
pute in some respects. Gershenfeld (1990) showed that a
noise with power spectrum P (f) of 1/f¢ obtained from
some standard electrical sources cannot be explained by
deterministic models with fewer than 20 degrees of free-
dom. Of course, this result cannot completely exclude the
possibility of a pseudo (low-dimensional) chaotic profile
caused by some kind of high-dimensional stochastic noisy
process. More details about this problem will be present-
ed later.

Solar wind chaotic dynamics
Temperature and magnetic field chaotic analysis

Here we present some first results of the strange attractor
analysis for solar wind data. Fig. 7a shows a typical form
of solar wind temperature measurements in situ near the
earth. The time resolution is 1 h and the time series length
is N = 12 000. The corresponding autocorrelation coeffi-
cient presented in Fig. 7b decays abruptly to zero after
about 80 h of lag time. In contrast, the colored noise with
the same fractal dimension as the temperature time series
shows a very slowly decreasing autocorrelation coeffi-
cient. Figure 7 c describes the power spectrum of the tem-
perature time series. It is clear that it follows a power law
P (f) oc f ¢ with an exponent a of 1.1 £+ 0.1. For a linear
fit, we used frequencies lower than about — 4.2 Hz. Any
other trial of fitting gives a < 1.

Figure 8 shows the characteristics for a time series of
solar wind magnetic field (SW B) data. The SW B-field
autocorrelation coefficient decreases abruptly to zero af-
ter about 40 h, while the corresponding colored noise
autocorrelation coefficient decreases very slowly. Clearly,
colored noises having similar fractability (correlation di-
mension) to SW temperature and SW B-field data be-
come decorrelated very slowly (the first zero of the corre-
lation coefficient occurs at about 1500 units of lag time) in
contrast to real SW time series which become decorre-
lated after 40—80 h. The power spectrum of the SW B-field
also follows a power law P(f)oc f~¢ with a about
1.8 £+ 0.2. Figure 9 summarizes the correlation dimension
analysis for the SW data. The fractal dimensions found
were 4.5 for the SW B field data and 4.8 for the SW tem-
perature data. Figure 10 shows the estimates of the larg-
est Lyapunov exponents L, for both the SW data and
a colored noise time series with fractal dimension 4.5,
which is similar to that of the SW time series. As in the
case of the magnetospheric time series, the positive LEs
for the SW temperature and SW B-field time series are
obviously dependent upon the evolution time step. In
particular, Fig. 10a shows the temperature LE which sta-
bilizes at 0.3 bit/h and 0.1 bit/h, for evolution time steps
of 3 and 10 h respectively. For the SW B field time series
(Fig. 10b) we observe that the stabilizing values of the
LEs are 0.15 and 0.07 for the same evolution time steps.
The corresponding values in the case of colored noise
time series (Fig. 10¢) are one order of magnitude lower.
Also the estimated variation in the SW data, AL _,,,
which is obtained by changing the evolution time step, is
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Fig. 7. a Solar wind (SW) temperature data with 1-h time resolution
measured in situ in interplanetary space, b the autocorrelation coef-
ficient for the SW temperature data and a colored noise with the
same fractal dimension as the SW temperature data, ¢ the power
spectrum of the SW temperature data

0.2 bit/h for the SW temperature and 0.08 bit/h for the
SW B-field. In the case of the colored noise, L,,,, is almost
one order of magnitude lower than this. The variations in
SW data AL, are 5—10 times higher than the variations
in colored noises.

Discussion

The above results support the supposition of low-dimen-
sional chaotic dynamics of the solar wind. The coinci-
dence of the correlation dimension by two different kinds
of data was remarkable, being 4.5 for the magnetic field
time series and 4.8 for the temperature time series. More-
over, if the real time series behaved as colored noises with
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Fig. 8a—c. Same plots as in Fig. 7 for the solar wind magnetic field
time series

identical power spectra, then the estimated dimension D
should be higher than 20 for the temperature data and
about 1-3 for the magnetic field data. These values are
clearly different from the estimated values, 4.5 and 4.8, of
the correlation dimensions for SW time series. Also, in the
case of colored noise with a D of 4.5, which corresponds
to a = 1.44, the decorrelation time should be 2000 units,
as is shown in Figs. 7b and 8b. This value is about two
orders of magnitude larger than the temperature (80 h)
and the magnetic field (40 h) decorrelation times esti-
mates for our data. We thus believe that we also have
strong evidence about a strange attractor structure for the
solar wind dynamics with fractal dimension 4.5-5.0.
Figure 11 shows three-dimensional phase portraits for
the SW temperature and SW B-field data (Fig. 11a, b),
while Fig. 11 ¢ shows the three-dimensional phase por-
trait for a colored noise time series with fractal dimension
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4.5, similar to the fractal correlation dimension of the SW
time series. These figures reveal a rich structure for the
SW data which possibly corresponds to the three-dimen-
sional projections of smooth trajectories evolved in
higher spaces, while the colored noise time series simply
shows Brownian motion with an almost homogeneous
spatial distribution.

More tests for the exclusion
of low-dimensional colored noises

Although the above results gave significant evidence for
the presence of a low-dimensional chaotic attractor in
space plasma dynamics, the possibility for different inter-
pretations is still open. Some arguments to exclude the
possibility of a pseudo-chaotic profile related to random
noises studied in Osborne and Provenzale (1989) have
already been presented. However, this kind of noise
doesn’t eliminate entirely the stochastic processes with
convergent dimension. For this reason, we discuss in this
section more tests about the possibility of pseudo-chaotic
behaviour which would be associated with a nonlinear
stochastic process. This process would not necessarily be
generated by chaotic dynamics. For nonlinear noises,
phase randomization destroys the multifractal nature of
the process but it does not significantly alter the value of
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the correlation dimension. Thus we use the Fourier pre-
sentation of our time series:

x(t) =X C,cos(wt; + @),
k

where ¢, are the phases and C, are constants.

The randomization of phases transforms the original
time series to a colored noise. If the low-dimensional
chaotic profile of the original time series is caused by a
noisy stochastic process, then this profile must remain
invariant after the randomization of the phases. In the
case of a deterministic chaotic signal, phase randomiza-
tion can destroy the low-dimensional chaotic profile. Fig-
ure 12a—d shows the slopes of the correlations integrals
for the magnetospheric and solar wind randomized time
series. It is clear that randomization destroys the chaotic
profile of the original time series, since these figures do
not reveal any saturation of the scaling exponent (which
corresponds to the correlation dimension) to a value low-
er than 10.

Moreover if we suppose that the power law
P(f) oo f~“of the power spectra described above for the
space plasma time series is the result of a colored noise
process, then it is interesting to study the stationary or

Z=T(t+271)

}
|
|
|
i

A
|
|

Fig. 11. Three-dimensional portraits for the SW data and the corre-
sponding colored noise

non-stationary character of the time series. Colored nois-
es with pseudo-chaotic (low-dimensional) profiles are self-
affine fractional Brownian random signals (Osborne and
Provenzale, 1989). A random signal x(t;) (i=1,2,..., N)
is said to be self-affine if the relation

x(t;+ bAt) — x(t)=b" [x(t;, + At) — x(t,)]

holds independent of time. 2= means, equality for average
values over all the points, while H is known as the scaling
exponent. For 0 < H < 1, m independent random self-
affine signals x,(¢t) (n=1,2,...,m, i=1,2,...,N) can
form a self-similar fractal curve in a m-dimensional space.
According to Mandelbrot (1982), in such a self-similar ran-
dom path the fractal dimension Dy, is given by the relation

Dy = min {1/H,m}.
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On the other hand it is known that a self-affine signal
has a power-law spectrum P(f)oc f " *witha=2H + 1.
It is clear now that, for 1 < a < 3, the Grassberger and
Procaccia approach (1981) cannot distinguish between
fractal attractors and fractal random curves of the same
dimension.

For a fractional self-affine random signal, it can be
proved that the average increments [x(t;) — x(¢,)],, are
zero while the variance of the increments V (t; — t,) given
by the average of [x(t;) — x(t,)]* diverges with time ac-
cording to the relation

V(ti - to) ~ (ti - to)ZH

(Feder, 1988). This means that fractional Brownian mo-
tions with colored noise profiles, although they can have
low fractal dimension, are not stationary signals, unlike
motions on strange attractor structures.

So if we are able to assert the stationarity of space
plasma time series, then the fractional Brownian motion
could be excluded. In order to test the stationary of a
random physical process we can use a measure g (x) of the
probability density in phase space. For a stationary pro-
cess, ¢ (x) must be invariant with time; while the same
must be true for the density projection g (x;) correspond-
ing to the probability density of the x; coordinate, for
which we have

o(x)dx; = [o(x)dx, ...dx;_, dx;,, ... dx,,.

We can calculate g (x;) for one coordinate x; correspond-
ing to the experimental time series data by dividing the
x;-axis into short intervals and counting the measured
points which fall into these intervals. Figure 13a — d con-
tains the results of the normalized measures g (x;) for the
space plasma time series. The solid line shows the mea-
sure ¢ (x) based on the entire time series, while the curve
with stars corresponds to the measure g (x) based on the
first half of the same time series. The coincidence is very
good and the chi-square test for checking the accuracy of
fit gives values over 90%. Figure 14a and b shows g (x) for
colored noises with the same fractal dimensions. It is evi-
dent that the probability density function ¢ (x) depends
strongly upon the length of the time series. The chi-square
test shows that the coincidence is very low with values of
the test-statistic below 20%. This reveals the nonstation-
ary character of the noise signal in contrast to space plas-
ma time series.

Until now, we have presented four independent tests in
order to exclude the possibility of low-dimensional pseu-
do-chaotic dynamics in space plasmas. These were: a) the
comparison of the correlation dimension (D) with the
power spectra profile (a) according to the relation D = 2/
(a —1); b) The comparison of the autocorrelation func-
tion profiles of the space plasma time series and the col-
ored noises with the same fractal dimension; c) phase

<7

Fig. 12a—d. Slopes dIn C(r;m)/d In(r) corresponding to time series
with randomized phases for: a AE index, b plasma sheet B-field, ¢
solar wind temperature, d solar wind B-field. These plots were calcu-
lated for embedding dimensions m = 4,5,6,7,8
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randomization of the initial time series, which produced
random signals showing that there is no saturation of the
scaling exponents at values lower than 10; and d) the
stationarity of the space plasma time series in contrast to
the nonstationary character of fractal Brownian signals.
These tests support the view that the low values of the
fractal dimensions and the positive Lyapunov exponents
found here for space plasma time series may be caused by
strange attractor dynamics. However, the problem of
noise is still open, as it is reasonable to accept the presence
of a noisy component in our time series. So, in the follow-
ing we apply the Grassberger-Procaccia algorithm to
time series which are derived from the initial time series
after moving average (or running average) smoothing or
differencing. A possible theoretical framework within
which we can handle practical problems is a model of the
form

X(t)=ult)+U(,)

where X (t,) is the initial time series, u(¢;) is the trend of the
X (t;) and U (t;) is a stationary stochastic series. By apply-
ing a moving average smoothing technique, we reduce the
stochastic component U (t;), while differencing removes
the trend of our time series. The relation

S(ti) = [X(ti-1) + X(ti) + X(ti+1)]/3

was used for the smoothing of our time series, while the
relation

VX(ti) = X(ti) - X(ti—l)

was used for the differencing.
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Figure 15a shows the first 2x10° points of the
smoothed AE index (solid line) and the first 2 x 10° points
of the first differences (broken line). Figure 15b shows the
same curves for the solar wind temperature (TSW) time
series. Figure 16a and b shows the corresponding power
spectra for the smoothed time series (solid line) and the
first differences (broken line). It is important to note that
the power spectra of the smoothed time series is similar to
the spectra of the original time series (Figs. 1c and 8c).
However, differencing gives a power spectrum similar to
white noise, since it acts as a high pass filter, which per-
mits the high frequencies to pass but significantly weak-
ens the low frequencies. It is apparent that differencing
acts as an amplifier of the noisy component included in
the original time series. This is in accordance with the
results of the Grassberger-Procaccia algorithm applied to
the smoothed time series (Fig. 17a and b) for the first
differences (Fig. 18a and b). Figure 17a and b shows the
slopes of the correlation integrals for the smoothed AE
index and TSW time series for embedding dimensions
m=4, 5, 6,7, 8, while Fig. 18a and b shows the same
slopes for the first differences of the AE index and TSW
time series. It is interesting to note that, in the case of
smoothing, there is a clear saturation of the scaling expo-
nent at 2.8 for the smoothed AE index and 4.3 for the
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Fig. 16. a Power spectrum for the smoothed AE index (solid line),
b power spectrum for the first differences of the AE index

smoothed TSW time series. These values are clearly lower
than the saturation values 3.5 and 4.8, which were esti-
mated for the original AE and TSW time series. In con-
trast, differencing does not reveal any saturation, at least
for embedding dimensions, m, lower than 10 in both cases.
This characteristic can be explained if we suppose that
differencing cuts the low-dimensional chaotic component
of the original time series and leaves the purely stochastic
(high-dimensional) noisy components of the time series
unaltered. Similar results were obtained for the time series
of the plasma sheet and solar wind magnetic field.

Summary and discussion

In this work we applied a strange attractor analysis to
magnetospheric and solar wind data. This analysis gave
us strong evidence for the existence of low-dimensional
chaotic dynamics in space plasmas, especially in magne-
tospheric and solar wind systems. Although the road for
different interpretations (stochastic pseudo chaotic pro-
file) is not entirely closed, we believe that the calculation
of fractal correlation dimensions (2.5—3.5 for the magne-
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tospheric plasma system and 45 for the solar wind plas-
ma), the positive Lyapunov exponents and the three-di-
mensional phase portraits for the magnetospheric and
solar wind time series support the supposition of deter-
ministic chaos. However, this supposition must be tested
more carefully with prediction algorithms which could
help to distinguish more efficently between purely
stochastic (noisy) and chaotic (deterministic) processes.
Some interesting results in this direction in space plasma
dynamics will appear in the near future.

At this point we must note that the supposition of
deterministic chaos is not without physical meaning for
space plasmas, as these are nonlinear and dissipative sys-
tems. It is becoming apparent that the theory of strange
attractors finds many applications in a wide variety of
physical situations, such as the onset of turbulence in
fluid, nonlinear wave interactions in plasmas, self-genera-
tion of the earth’s magnetic field magnetohydrodynamic
flow, etc. (Ott, 1981). For nonlinear and dissipative (open)
systems, some kind of non-local self-organizing process is
present. This implies the reduction in the infinite number
of degrees of freedom (as happens with plasma) to a few
macroscopic degrees of freedom which are sufficient for
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Fig. 18. a Slopes dIn C (r; m)/d In (r) corresponding to the first differ-
ences of the AE-index for embedding dimensions m =4,5,6,7,8,
b same plots as (a) for the SW temperature time series

the description of the global dynamics of the system. A
mathematical description of this process could be ob-
tained by using the slaving principle (Haken 1983). Ac-
cording to this principle, a dissipative system, possibly
with infinite modes S, = g, + ie,, permits some kind of
distinction between a finite number of unstable slow mod-
es (g, >0,k =1,2,...,n)and an infinite number of stable
fast modes (g, < 0). Then the finite slow (unstable) modes
slave the stable fast modes and reduce the macroscopic
dynamics of the system to a low dimensional subspace of
the original infinite dimensional phase space. The finite
unstable modes (¢, >0, k=1,2,..., n) are characterized
as order parameters and define the low-dimensional
phase space of the system, while the evolution of the sys-
tem state in phase space can be asymptotically reduced to
a fractal set which has the characteristics of a strange
attractor. These characteristics are a low fractal dimen-
sion and a sensitivity to the initial conditions of the sys-
tem dynamics. The existence of at least one positive Lya-
punov exponent is the consequence of these characteris-
tics. Moreover, when the dynamics of the system evolves
on a strange attractor (attracting set), then Poincaré sec-
tions on two or three dimensional hyperplanes it is possi-
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ble to reveal simple ordered structures. For the magneto-
spheric plasma we could assume as order parameters the
elements of the magnetospheric equivalent electric circuit
which constitute a nonlinear chaotic system. Such a non-
linear model for magnetospheric dynamics has already
been developed by a suitable physical extension of the
linear magnetospheric equivalent electric circuit. It is sig-
nificant to note that the time series obtained by solv-
ing this nonlinear magnetospheric model numerically
showed similar chaotic characteristics to those described
above for the AF index and the plasma sheet magnetic
field time series. These results are under preparation and
will appear in the near future.

In relation to a solar wind magnetized plasma system,
the order parameters which describe the low-dimensional
chaotic dynamics (if we believe that this is a correct inter-
pretation of the results presented here) must be derived by
an appropriate generalization of the Lorenz model. For a
magnetized conductive fluid (as happens with space plas-
mas in the MHD approximation) the system of partial
differential equations which describes the fluid must also
include the Maxwell equations. This means that the
Lorenz approximation must be extended to the entire
MHD system of equations. This is in physical agreement
with the fractal dimension 4.5 which has been estimated
above for the solar wind dynamcis.

Finally we believe that the complete verification of the
existence of strange attractors in space plasmas dynamics
will be better explained by: (a) the construction of appro-
priate nonlinear models, as described above; and (b) the
development of prediction codes. We already have some
encouraging results for the prediction of the experimental
time series presented in this work.
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