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space have

The scaling properties of rain field maps in the (x,y.t :
characterizes

been investigated, and the elliptical dimension (del)‘ whic
the degree of anisotropy of the field, has been calculated. A value of 'del =

3.0 would correspond to statistical isotropy in Cs,yace: and time similar to the
“frozen turbulence” hypothesis out forward by G.I Taylor which implies that
the space/time transformations are not scale dependent. Departures below this
valuc indicate that the statistical properties in time differ from those in

space. Here, using weather radar data, we estimate that -del=2'62 which

indicates that the validity of Taylor's hypothesis in the atmosphere may be
thought via space/time transformations which are scale dependent.

CBoOHCTBA  NPOCPAHCTBEHO-BPCMCHHOro  macwiTaba  ocagkoB  H
aeicTBATEMILHOCTL rHnoTe3u Teinopa B atmochepe Mceenenosansl maciutabrbie
CBOHCTBA KapT 10Js OCaaKoB ‘B x,y,t) NpPOCTPAHCTBE M PaCYMTaHa
JJLTHNTHYECKAR  PA3MEPHOCTb, ), KOTOPas XapakTEpHIMPYET CTENeHb aHu-

3OTPOMHOCTH MNOAS.  3HaYCHHE del=3'o COOTBETCTBYET CTATHCTHYEC- KOM
M3OTPONHOCTH B NPOCTPAaHCTBE W BPEMEHH, CXOXKYIO HAa  THOOTE3y
"3amMOpoxeHHYto TypOynentHocTd" Teinopa, koropas yTBepXAaer, 4roO

NPOCTPAaHCBEHHO -BPEMCHHBIC TpaHcpOpMAlMM HE 3aBHCAT OT Macwraba.
OTKJIOHCHUS HHXKC STOr0 3HAYCHHs TOKA3biBAIOT YTO CTATHCTHYECKHE CBOHWCTBA
MO BPCMEHH OTJHYAKOTCS OT 3TMX B mnpocrpauctee.  Mcnonbiys nannbie
METECOPOJIOTHYECKOrO JIOKATOPA, Mbl MOJIYYHJIM 3HA4YEHHE dcl=2'62 YTO AaeT

BO3MOXHOCTb npe/cTaButh cebe npumenumocTs runotesu Teinopa npu nomouu
NPOCTPaHCTBEHO- BPeMEHHBLIX TPaHCPOPMALMil, KOTOPHIE 3aBHCAT OT MaciiTaba.

Introduction simple (or single) scaling is actually a special

case. In nature we usually deal with fields (in
which a number is assigned to cach point in space,
for example, temperature). Such fields have been
found to involve multiple scaling and thus are
characterized by a sequence of fractal dimensions

An object is said to be fractal when its large
scale structure is a magnified copy of its small
scale structure. In other words, two pieces of a
fractal object one of size A and the other size

A _(where‘ A" is contained in A) are statisticaly
equivalent over a wide range of intermediate lengths
as long as the smaller piece is magnified by a

factor A/A. This property is a kind of symmetry

- and is called scale invariance or simply scaling.

The exact relation between the small and large
scales 1s dictated by the so-called fractal
dimension. The above described scaling is often
referred to as simple scaling and it has been shown
to exist in many mathematical and physical systems
gl;/é%r)xdelbrot, 1983; Lovejoy, 1982; Tsonis and Elsner

Lately it has been realized that in nature

(Lovejoy et al., 1987). The notion of multiple
fractal dimensions can easily be understood from the
following example. Consider the precipitation area.
This field is defined at different intensities (i.
e., rainfall rates) starting at some minimum
detectable signal, Rmin, and going up to some

maximum signal, R From this field one may

max’
define many subficlds by considering the
precipitation  areas  (strictly  speaking  the

fractions) delineated by any intensity Rmin<R<

Rm.ux‘ Obviously as R approaches R o less, more
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intense and increasingly sparser rain area Wwill
remain. At some point there will be no rain area at
all. Then the dimension of the rain field will be
zero. Thus, the dimension of the rainfield is a
function of its intensity and thus the simple
scaling discussed above may only be a special case.
The above ideas on multifractals (or multiscaling)
can be traced to an earlier work by Mandelbrot
(1974). o
At a fixed threshold T the fractal dimension
of a field embedded in d-Euclidean space can be
found by the so-called box-counting algorithm. One
covers the field by d-dimensional boxes of side
length L and counts the number N(L) of boxes
that are needed to completely cover the set
(Hentschel and Procaccia, 1983). If one finds that
for a wide range of scales N(L)ocLDd(T) then Dd(T)

is an estimation of the fractal dimension of the
field for that threshold T. These ideas have been
explored by Lovejoy et al. (1987) who analyzed the
two (x,y) and three (x,y,z) dimensional
structure of the rain field (employing radar data).
Lately, in a different approach Gupta and Waymire
(1990) investigated multiscaling in terms of the
moments of instantaneous spatial rainfall.

. In addition to the above concepts, there is the
notion of the elliptical dimension (del). Unlike

"mathematical" fractals where the iteration process
can be extended to all scales, "physical" fractals
like those observed in nature may be observed within
a range of scales only. Thus, in the atmosphere a
fractal process may be terminated by viscosity at
small scales and by the finite scale of the planet
at large scales. As a matter of fact nature may
"interfere” with a fractal process in many
interesting ways depending largely on the imposed
boundary conditions. Let us think of cloudiness for
a minute. Clouds occur in the troposphere which is
on the average about 10km high. Thus, cloudiness
is restricted between two spheres one of radius
6380km (equatorial radius) and the other of radius
6390km.  Obviously the vertical scale is much
smaller than the horizontal scales. This
stratification obviously does not allow the above
discussed simple or isotropic scaling to exist. A
small cumulus cloud (smal scale cloudiness) when
magnified will not produce the flat structure of
cloudiness observed over large scales. One may
think of the large scale cloudiness field as a
magnified and compressed copy of the small scale
cloudiness. In such cases the field could be
treated with an anisotropic scaling that might
involve magnification and compression and could be
characterized by a dimension which is called the
elliptical dimension. When we seek to characterize
the anisotropy of a field whose degree of
stratification is not known a priori the elliptical
dimension can be estimated by a procedure called the
"elliptical dimensional sampling" and involves
repeating the box-counting algorithm with families
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of stratified boxes of sizes L by L by LH for
0.0<H <1. 0. This method objectively determines
which family of sampling boxes (i.e. optimum Hz)

has the same degree of stratification as the field
in question. If the optimum Hz is known the
the field, del, is
determined from the relation dc =1+ 1+H. If

the field is iostropic then Hz= 1.0 and de|=3.0.

The field in this case is said to be not stratified
at all (the statistical properties are the same
along all directions). If the field is completely
stratified then Hz=0.0 and de l=2.0. For the

(x,y,z) rain intensity ficld, Lovejoy et al. (1987)
obtained an estimate of de l=2' 22.

elliptical dimension of

‘Data Analysis and Results

In this report we analyse the scaling
properties of rain in the space/time domain.
Specifically we analyze the (x,y,t) rain field
which is made up of sequences of radar
reflectivities as delineated by Plan Position
Indicator (PPI) maps (Hill, 1988). These
reflectivities. are one of the highest quality
geophysical data available for this purpose. The
precipitation  particles are very effective
scatterers that allow the precipitation structure to
be sampled quickly and without perturbation The
reflectivity, Z 1s the integrated backscatter of
the precipitation particles.  This reflectivily is
usually converted to rainfall rate R via

semi-emperical relations of the form Z = AR® (were
A and b are constants). Here we investigate the
structure of the reflectivity field. By studying
reflectivities directly, rather than using R, we
avoid the traditional radar calibration problem.
The data used were recorded at the McGill weather
radar observatory on 17 October 1989 over a period
of twenty minutes. The temporal resolution of the
data (time separation between consecutive PPI maps)
is 10 seconds. This is the highest resolution in
time we can have. The data were sampled in polar
coordinates ( r,0) with 120 by 360 elements. Thus,
the complete (r,0, t) field contains 120x360x120 =
5 184 000 elements. The intensities are resolved
into 256 logarithmic levels that are 1/4 decibels
(dB) apart. The entire scale transform spans a

range of 240x1/4 = 60dB = a factor of 10° in
reflectivity intensities. Note that reflectivity
levels in rain can exceed the minimum detectable

signal (approximately 16dB) by a factor of 10°.

The field in question is defined at different
intesity thresholds. In order to estimate the
elliptical dimension of such a field we seek to
determine the zero of the function (Lovejoy et al,
1087; Schertzer and Lovejoy, 1987)
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Fig.1. In box-counting we first define our field (as delineated a threshold, T). Then we find the number N(L) of

disjoined squares (or boxes of appropriate shape and dimension) of size L needed to completely cover the field.
The dimension, D(T), of the field is then estimated by the Eq. N(L)L - D(T). Thus in a logN(L) versus logL
plot D(T) can be estimated by the slope. (.A4) Plot of logN(L) versus logL for five selected radar reflectivity
thresholds for a single PPI map. Because of the sampling in polar coordinates the boxes used are in the horizontal
The thresholds increased from top to bottom by 10dB from 4dB above the

direction sectorial (pie-shaped) boxes.
The negative Slopc, DZ(T)‘ decreased from 1.36 to 0.89.

minimum “detectable signal to a maximum of 60 dB.
(B) A similar analysis but for the complete (r, 8, t) rainfield. The negative slope DJ(T) decreased from 2.20 to

1.55.
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Fig.2. The function f( Del) as it is defined in the text. It is based on eight values of the elliptical dimension of

the box-counting space, Del and ten reflectivity -thresholds.
= Z(T)Del/del’ it can be shown that f(Del) = (Del/del

this graph it is estimated that de1= 2.62

M (b)) = [eD (1) - (1))
where the sum is over the number of thresholds which
in our case is ten and Del is the elliptical

dimension of the box-counting space. The quantity
C(T) denotes the co-dimension of the field as
defined by the threshold T. By definition Cd( T) =

d - Dd(T) where d is the dimension of the
embedding Euclidean space and D d( T) isthe fractal

dimension of the ficld as a function of the
threshold. Having previously defined the elliptical
dimension, the philosophy behind estimating it via
equation (1) is as follows: For isotropic fields

C3(T) =3 - D3(T).
Also for isotropic fields one should expect that

D3(T) =1 + DZ(T)

(that is, taking cross-sections reduces the

dimension by one). Thus, it follows that
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Considering (Schertzer and Lovejoy, 1987) that C-Del( T)

-1)):C2(T‘-) which indicates that f(DeI) is linear. From

C,(T) =2~ D,(T) = C,(T)

(the co-dimensions are conserved). It can be shown
that conservation of co-dimensions extends to any
subspace of the space the process is embedded in.
For stratified data one obtains that

CDcl(T) = CZ(T)

(Lovejoy et al., 1987, Schertzer and Lovejoy 1987)
as long as the data are analyzed with the correct
stratification of the field hence with the correct

elliptical dimension, dc r of the field. We,

therefore, seek the zero of the function in Eq.1.
Eq.1. the quantities CDel(Ti) and Cz(Ti) are of

our data when employng box-counting, instead of
Cartesian grids we used sectorial (pie-shaped)
grids. The angular and downrange grid sizes
increased by factor of 2 in lunear scale. By
analyzing data in the (r,8) space instead of
transforming to a Cartesian coordinate system (x,y)
we eliminate all averaging and range-dependent
effects such as beam spreading, and so forth.

An example of box-counting from our radar
reflectivity data is shown in Fig.1. The straight
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lines of the graph indicate that scaling is followed
over corresponding range of scales. Note how the
slope decreases with increasing T. That indicates
that as the threshold increases the fractal

dimension of the corresponding rain field decreases.

Fig.2 shows the function f(Dcl) for the

(x,y,t) rain field. From this figure we find that

del is equal to 2.62. This result together with

the previous estimate (Lovejoy ey al., 1987) dcl =

2.22 for rainin the (x,y,z) space produces an
estimate of

del = 2.84 (= 2.22 + 2.62 - 2.00)

for rain in the (x,y,z,t) space. We should note
at this point that the radar averages in space and
samples in time. In order to address the effect of
having instantaneous values in time instead of
averages we experimented with averaging the data in
time. We found no differences in the results.
Thus, we decided to consider the (x,y, t) rainfield
at its highest possible resolution. Our results
indicate that even for short time scales (<20
minutes) the rain field is strongly anistropic. If
the field were isotropic (d,,=3.0 inthe (x,y,z)

or (x,y,t) spaceor del=4.0 inthe (x,y,z,t)

space) then the statistical properties along any
direction in space would be the same as those in
time and thus the space/time transformations would
be scale independent.  Such a result would
correspond to a statistical version of the "frozen
turbulence" hypothesis put forward by G.I Taylor
(Taylor, 1938) which assumes that the flow pattern
is "frozen" and simply advected past the point of
observation at a fixed velocity.

The validity of Taylor’s hypothesis in the
atmosphere has received a great deal of attention.
The use of the hypothesis has the great advantage of
enabling a single probe to infer spatial structures
from time series. Becausee of that noted
theoretical hydrologists (Waymire and Gupta, 1981;
Gupta and Waymire, 1987; Rodriquez-Iturbe et al. ,
1984; Waymire et al. , 1984) have stressed the
importance of the hypothesis in stochastic rainfall
modeling. Our results suggest that the validity of
Taylor’s hypothesis in the atmosphere has to be
thought via anisotropic scaling and thus via
space-time transformations which involve a scale
dependent velocity rather than a constant velocity.
This is important not only because it still enables
one to estimate spatial statistical properties from
temporal properties, but also because it is required
in both non-scaling stochastic models of rain

(Waymire and Gupta, 1981; Gupta and Waymire, 1987,

Rodriquez-Iturbe et al. , 1984) as well as in
fractal (Lovejoy and Mandelbrot, 1984) or
multifractal models (Schertzer and Lovejoy, 1987).
Our results, which are obtained using a new
approach, seem to disagree with previous results

obtained using correlations and spectra in rain
(Zawadski, 1973; Crane, 1990) which claim that the
"frozen turbolence" hypothesis should hold for time
scales less than half an hour. We hope that our
report will stimulate further research in this very
important topic and approach.

Conclusions

In this report we presented results that
indicate that even for short time scales the field
is anisotropic. Our results suggest that space/time
transformations in the atmosphere (and thus the
validity of Taylor’s hypothesis) are scale
depended. Our approach provides an excellent
example of how concepts from fractal geometry may
help us address one of the most important
theoretical issues of geophysical fluid dynamics.
The conclusions drawn present a new challenge for
rainfall theory and modeling as well as to the
validity of Taylor’s hypothesis and its relevence to
scaling.
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