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ABSTRACT Ideas from the theory of dynamical systems
are applied in biological pattern formation. By considering a
simple reaction—diffusion model subjected to an external ex-
citation, we find that the system can give rise to a great variety
of periodic, quasiperiodic, and chaotic evolutions.

The generation of spatial patterns constitutes one of the most
important problems in developmental biology (1). The first
detailed theoretical account of how patterns can be generated
was provided in 1952 by Turing (2), who proposed that an
initially homogeneous system of chemicals (morphogens)
may become nonhomogeneous through reaction of the chem-
icals with each other and diffusion. These nonhomogeneous
chemical distributions form a prepattern out of which the
ultimate pattern or structure will emerge. The above concept
constitutes the basic philosophy behind the reaction-
diffusion models for biological pattern formation, largely
developed by Meinhardt. Using the reaction—diffusion con-
cept, Meinhardt (3) has presented models that account: for
pattern formation in several biological processes. More re-
cently, Meinhardt and Klingler (4) were also able to simulate
the pigmentation patterns on shells of molluscs. The model
can be described by two reactions, one autocatalytic and one
that acts antagonistically to the autocatalysis. Any vital
molecule for the generation of a particular pattern (i.e., the
pigment deposition for shell patterning) is the activator, «,
which stimulates its own production (autocatalysis). The
antagonistic reaction can be caused by the inhibitor, 4. This
interaction is commonly modeled by two nonlinear coupled
partial differential equations that give the evolution of a row
of adjacent cells. A possible and widely used mathematical
formulation of a reaction—diffusion model for biological for-
mation is given by the following equations:

da c(a? + ¢p)

- pa + D Va [1a]
at h
::—h = ca? — vh + D, V?h, [1b]
t .

where ¢ is time, « is the activator concentration, s is the
inhibitor concentration, D, is the rate at which the activator
diffuses from cell to cell, Dy, is the rate at which the inhibitor
diffuses from cell to cell, w is the decay rate of the activator,
vis the decay rate of the inhibitor, c is the source density, and
¢ is an activator-independent activator production.

Egs. 1a and 1b provide the concentration change of a or h
in a time interval. Adding these changes to some initial values
(steady state) gives new concentrations at a later time.
Repeating this procedure, one can derive the time evolution
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of a and 4 in a one-dimensional array of cells. If the steady
state is unstable to small fluctuations the above procedure
will give rise to simple periodic patterns. More complex
patterns (oblique lines, branching, checkerboard or mesh-
like patterns, etc.) have been obtained through manipulation
of the above model by adding new terms or even more
equations (3, 4). This approach, even though rather phenom-
enological, has provided excellent evidence in support of the
reaction—diffusion concept in biological pattern formation. In
biology, however, a system can be often influenced by
several periodic external forces that have not been taken into
account by the above models. An external force could be
anything of biological significance, such as temperature or
pressure variations or a certain product of a gene that obeys
a periodic fashion of expression.

In this paper we will present results showing that a variety
of patterns ranging from periodic to quasiperiodic and chaotic
can arise naturally from the dynamics of a simple forced
reaction—diffusion model. The formulation of this model is
exactly the same as above, but with the term A sin ot added
to the first equation. The parameter A indicates the amplitude
of the forcing and w the angular frequency of the forcing. The
period of the forcing, p, is therefore 27r/w and the frequency,
f, in cycles per unit of time is 1/p. Similar transitions have
been observed in the study of the so-called forced Brusselator
(5-8). The Brusselator (9) is a model for an oscillatory chem-
ical reaction that, when subjected to an external forcing, gives
rise to quasiperiodic and chaotic solution. While some simi-
larities exist in the formulation of the forced Brusselator and
the forced reaction—diffusion model for biological pattern
formation, differences in the evolution may be significant due
to differences in the nonlinear terms.

The Unforced Model
From Egs. 1a and 1b we can define the concentrations «, and

ho of the steady state by setting da/dt = 0, 9h/dt = 0, V’a =
0 and V?h = 0:

clag® + co)/ho = pag [2a]
cag® = vhy. [2b]

From Eqgs. 2a and 2b it follows that
ag’ — (v/way® — cov/u =0 [3a]
ho = (c/v)ay’. [3b]

Eq. 3a is a cubic equation whose discriminant is greater
than zero for all values of u, », c and ¢y. Thus, Eq. 3a has only
one real solution. Then (considering also 3b) it follows that
the steady-state solution (a, ko) is always uniquely defined.
If this steady state is unstable to small perturbations it can
give rise to a periodic pattern.
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Fig. la shows the evolution from a slightly perturbed
unstable steady state of a cell randomly selected out of a
one-dimensional array of size 20. The solutions are obtained
numerically by using the explicit approximation (10). The
margins (boundary conditions) of the array are considered
impermeable. The evolution of the cell is described by a
trajectory in the state space, which is defined as a coordinate
system whose coordinates are the necessary variables
needed to completely describe the evolution of the system. In
our case the necessary variables are two—namely, the
activator concentration and the inhibitor concentration. As
we can see from Fig. 1a the cell’s evolution becomes periodic
via a Hoph bifurcation. The trajectory approaches and re-
mains on the limit cycle, which is the attracting submanifold
of the available state space. In fact, all trajectories from
slightly different initial conditions are finally attracted by the
limit cycle. Thus, a periodic pattern will emerge. Fig. 1b
shows the spectral density (power spectrum) of this periodic
evolution. It shows peaks at integer multiples of the natural
frequency of the system, f;, which is approximately equal to
0.012.

The Forced Model

In this section we investigate the response of the forced
system in the case where the unforced system has a limit
cycle. The investigation will be carried out with the help of
the state space, Poincaré sections, and power spectra.
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F1G.1. (a) Evolution of a randomly selected cell according to the
unforced model with-c = 0.1, ¢o = 0.1, w = 0.1, » = 0.05, D, = 0.15,
and D;, = 0.05. Under such conditions the steady state is unstable.
Thus, for a slight perturbation the trajectory, via a Hoph bifurcation,
approaches and stays on a limit cycle. The evolution is periodic. (b)
Power spectrum of a. The natural frequency of the above unforced
model is f; = 0.012. The peaks at integer multiples of f; indicate a
periodic evolution.
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As was mentioned above, the state space depicts the
evolution of a cell in time. Fig. 2a shows an example where
the forced system exhibits a limit cycle (periodic evolution).
This type of oscillation is also called period-1 oscillation
because the trajectory repeats itself every cycle exactly. The
corresponding power spectrum (Fig. 2b) presents peaks of
frequencies that are integer multiples (harmonics) of the
driving frequency, which in this example is approximately
equal to 0.016. For a given trajectory we can follow the
evolution and mark the trajectory at times that are integer
multiples of the forcing period (27r/w). In this way a sequence
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FiG. 2. (a) Period-1 oscillation of a randomly selected cell
according to a forced model with A = 0.02 and w = 0.1. The other
parameters are the same as in Fig. 1la. (b) Power spectrum of a. As
in the case of Fig. 1b it indicates a periodic evolution with peaks at
integer multiples of the driving frequency >, = 0.1/27 = 0.016. (c)
Poincaré section of a. The presence of only one point indicates that
the evolution is periodic of order 1.
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of strictly comparable points is accumulated. Proceeding to
simplify the picture, we can erase the trajectory and keep the
so-called strobed points. The assembly of these points de-
fines the Poincaré section (11). Apparently, if the evolution
of a cell is periodic of order 1 with the frequency of the
forcing, the strobed points will be the same point repeating
forever (5). This is illustrated in Fig. 2¢, which shows the
Poincaré section of the periodic evolution shown in Fig. 2a.
If the trajectory is a subharmonic oscillation of order n
(repeating exactly every n cycles), the Poincaré section will
consist of n dots repeating forever in the same order. In this
case the power spectrum will still show sharp peaks at integer
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FiG. 3. (a) Quasiperiodic evolution of a randomly selected cell
according to a forced model with A = 0.0431 and w = 0.41888. The
other parameters are as in Figs. 1a and 2a. (b) Power spectrum of a.
All the peaks can be explained by the two basic frequencies f; = 0.012
and f> = 0.41888/2m =~ 0.0666. (c) Poincaré section of a. The strobed
points follow a closed curve as expected from a quasiperiodic
trajectory that fills a torus in the appropriate state space.
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multiples of the driving frequency but will also show n — 1
less-intense peaks between any two harmonics, indicating the
subharmonics.

By varying the parameters A and w, transition to a quasi-
periodic or to a chaotic evolution may be obtained. In a
quasiperiodic case a periodic motion is modulated by a
second motion, itself periodic but with another frequency.
The combination of frequencies will produce a time series
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Fi1G. 4. (a) Chaotic evolution of a randomly selected cell ac-
cording to a forced model with A = 0.03 and w = 0.0321 and the
remaining parameters as in Figs. la, 2a, and 3a. The trajectory
follows an irregular path on a ‘‘strange’’ submanifold of the total
available state space. (b) Power spectrum of a. It shows some peaks
on a continuous background. No preferred frequency is apparent.
This suggests that a strange attractor may be present. (¢) Poincaré
section of a, indicating the presence of a strange attractor. Note the
different picture from those in Figs. 2¢ and 3c.
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whose regularity is not clear. The power spectrum, however,
should consist of sharp peaks at each of the basic frequencies
with all its other prominent features being combinations of
the basic frequencies (11). Geometrically a quasiperiodic
trajectory fills the surface of a torus in the appropriate state
space. Thus, the Poincaré section will consist of an assembly
of points along an invariant closed curve (12). Fig. 3a shows
such an evolution. Note how the trajectory fills the surface of
our two-dimensional torus, which is the attracting subman-
ifold of the total available state space. The Poincaré section
(Fig. 3c) is a closed curve and the spectral density (Fig. 3b)
presents peaks at the two basic frequencies (f; = 0.012 and
f» = 0.0666) and at frequencies that are multiples or combi-
nations of the basic frequencies (2f1, fi + f2, etc.).

In a chaotic evolution the trajectory seems to ‘‘wander’’ on
a so-called strange attractor, which is not a limit cycle or a
torus, but some complicated submanifold of the available
state space that is not topological (13, 14). A chaotic motion
is neither periodic nor quasiperiodic (strictly speaking a
chaotic evolution is periodic with an infinite period). An
example of such an evolution is shown in Fig. 4a. Because the
motion is nonperiodic, the oscillation has no preferred fre-
quency and thus the corresponding power spectrum (Fig. 4b)
shows some peaks on a background of a continuous spectrum
(broadband noise). The power is simply distributed among an
infinite number of frequencies. The Poincaré section (Fig. 4c)
is made up of points that neither fall along a closed curve nor
repeat indefinitely in the same order. The points simply
repeat in an irregular fashion.

In addition, we find that for a given set of parameters the
type of the dynamics may not be affected by the size of our
cell array. This is demonstrated in Fig. 5, where we show the
evolution of a randomly selected cell from an array of size
100. For this simulation, the parameters are the same as in the
case of Fig. 4. By comparing Figs. 4a and 5 we see that the
corresponding attractors (and therefore the evolution) are
very similar.

In this paper we chose to present our results by displaying
the dynamics of a randomly selected cell. The reason for this
is that the dynamics of a randomly selected cell seem to be
representative of the evolution of all cells. In a given situation
all cells are undergoing one type of evolution only. Situations
where some cells undergo chaotic evolution, some cells
undergo quasiperiodic evolution, and some cells undergo
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FiG. 5. Chaotic evolution of a randomly selected cell out of a
one-dimensional array of size 100. All model parameters are as in Fig.
4a. The resemblance of the attractors in Fig. 4a and here indicates
that the type of evolution and therefore the type of dynamics may not
depend significantly on the size of the cell array.
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some periodic evolution were not observed. Fig. 6 shows the
evolution of another randomly selected cell from the exper-
iment with the cell array of size 100 discussed above and in
Fig. 5. By comparing Figs. 5 and 6 we see that both cells
undergo a chaotic evolution. The two trajectories are not
identical, however. This indicates that even though all cells
undergo a certain type of evolution, spatial gradients may be
present in the resulted pattern. A detailed study of the spatial
structure of these patterns was beyond the scope of this paper
and will be investigated in the future. It will be interesting, for
example, to assess the role of the external forcing and spatial
inhomogeneities in biological pattern formation. Finally, we
should mention that experimentation indicates that even with
small changes in the parameters, differently shaped attractors
are obtained. Thus, for all practical purposes an infinite
number of patterns may emerge from the model used here.

Perspectives

The theory of dynamical systems provides the basis for the
understanding of the states of order and disorder. More
importantly, attractors provide a geometric framework to
qualitatively and quantitatively compare different states. In
biology, chaotic dynamics have already been used to analyze
pathological situations such as cardiac arrhythmia or brain
activities (15, 16). Periodic-to-chaotic transitions have been
shown in several biochemical reactions, including the syn-
thesis of cCAMP and its effects on morphogenesis of Dicty-
ostelium discoideum. It has been shown that upon aggrega-
tion of the cells, cAMP is emitted with a periodicity by the
centers of the aggregation field. However, in a mutant of D.
discoideum the emission from the aggregate is not periodic
but represents chaos. The mutant develops with morphoge-
netic defects such as aberrant stalks and fruiting bodies (17,
18). Recently, Ohno (19) has found that periodic-to-chaotic
transition is applicable to coding sequences of the genetic
material and Nicolis (16) has shown that one-dimensional
spatially asymmetric and information-rich sequences like the
ones observed in biopolymers carrying biological information
may be generated from a time-irreversible dynamics possess-
ing a chaotic attractor. In this paper we have demonstrated
the existence of periodic, quasiperiodic, and chaotic solu-
tions of a simple forced reaction—diffusion model for biolog-
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FiG. 6. Chaotic evolution of another randomly selected cell out
of the one-dimensional array of size 100. All model parameters are
as in Fig. 4a. The resemblance of the attractors in Fig. 5 and here
indicates that both cells undergo the same type of chaotic evolution.
However, the trajectories are not identical. This may indicate that
spatial gradients may exist in the resulting pattern.
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ical pattern formation. Our results suggest that a great variety
of patterns can arise naturally through the interplay of a simple
reaction—diffusion process and an external forcing. The ap-
plication of chaos concepts to a set of partial differential
equations (such as the ones used here) may seem at first
beyond hope, as the state space of a partial differential
equation must have an infinite number of degrees of freedom.
The success of geometric ideas in partial differential equations
may be attributed to the fact that the system in question is a
dissipative system (11). Dissipation contracts volumes in the
state space, often reducing the final motions in a low-
dimensional state space. The model presented in this paper
provides us with the tools to analyze the fate of a particular
system of chemical reaction(s) that governs the generation of
simple and complex structures and, therefore, to understand
complexity in the generation of biological patterns. Lastly, in
a broader, philosophical view, the chaotic transition of some
systems may be the force of generation of complex structures
in biological systems, controlled simply by periodic excita-
tions and explainable within a simple mathematical frame-
work.
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