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CHAOS AND UNPREDICTABILITY OF WEATHER

By A. A. TSONIS

Department of Geosciences, University of Wisconsin-Milwaukee

Since nothing accidental is prior to the essential neither are accidental
causes prior. If, then luck or spontaneity is a cause of the material
universe reason and nature are causes before it.

Aristotle, Metaphysics, Book XI Ch. 8

WEATHER is a subject that receives a lot of attention. Its variability and diversity
has fascinated human beings on this.planet since the dawn of human life. Weather
and climate are two regulating factors of the living and non-living matter on the planet.
Plants, animals and humans are constantly exposed to their continuous action. Under the
action of weather conditions that prevailed in the past and of those that prevail today even
the surface of our planet has been modified.

It is then only natural that predicting the weather soon became a major task. Despite
the advances in our knowledge of the atmosphere however, prediction of the weather is
still a puzzle. All of us know that weather cannot be forecasted reliably for a time greater
than a few days and for these few days the accuracy is limited. Part of the problem is
thought to be the limited representation of the initial stage of the atmosphere. We cannot
have an exact forecast unless we can first completely describe the conditions of each
particle in the atmosphere. Then the laws of physics can predict the future state of every
particle exactly. The above view is referred to as the Laplacian determinism and can be
dated back to the late 17th century. Science has come a long way from that view,
however. Recent advances in the study of dynamical systems has invalidated the above
view. It is the purpose of this article to introduce the reader to these advances which most
likely will affect significantly the way we view and try to predict the weather.

SIMPLE DYNAMICAL SYSTEMS

In the preceding paragraph the term ‘dynamical systems’ was used. What is a
dynamical system? In simple terms a dynamical system is a system whose evolution from
some initial state (which we know) can be described by some rule(s). These rules are
conveniently expressed as mathematical equations. The evolution of such a system is
best described by the so-called state space. Let us first give an example of a simple
dynamical system and its state space.

A ball is allowed to roll along a curve from some initial state as it is described in Fig.
la. This initial state can be completely described by the speed and position of the ball.
Since the motion of the ball is, apparently, restricted on a curve the position of the ball
atany time can be characterized by its distance from point O on the x-axis, which is taken
as the origin. Under such an arrangement, Newtonian physics provide the equation
(rules) which describe the evolution of that initial state in time.

Let us assume that to begin with (position 1) the ball is at rest (zero speed) at a given
distance from point O on the x-axis. The ball is then let free to roll. As the ball rolls
towards point O, its speed increases due to gravity acceleration. Therefore, after a while
(position 2) the ball will be closer to point O and will have a higher speed. Once the ball
crosses point O its speed decreases because now gravity acts in a direction opposite to
its motion. Therefore at some point (position 3) the ball’s speed will become zero again.
Immediately after that the ball will begin to roll back and after it crosses point O it will
once again attain, at some point, a zero speed (position 4). Because there is always some
friction, however, the points at which the speed becomes zero (to the right and left of the
origin) are not fixed but are found closer and closer to the origin. Finally the ball will
come to rest at point O.
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Fig. 1(a) (below) A dynamical system is a A
system whose evolution from some initial v
state can be determined by some rules. In
the figure below the motion of the ball can
be completely described by the laws of
physics if its initial position and velocity
are known.
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Fig. 1(b) (above) A useful concept in studying
the evolution of dynamical systems is the
state space. The coordinates of the state
space are the necessary variables that are

> needed to completely describe the

x evolution of the dynamical system in
question. In our example these coordinates
are the velocity and position (with respect
to point O) of the ball. As the ball rolls back
and forth it follows a trajectory in the state
space which converges to a fixed point.
This point is called an attractor of the
dynamical system.
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Fig. 2 (above) Another form of an attractor is
x the limit cycle. In this case all trajectories
are attracted by the limit cycle which
represents a period evolution. The
grandfather clock is a system which
possesses a limit cycle as an attractor.
Another familiar system with a limit cycle
as its attractor is the heart.
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Apparently, the evolution of the above dynamical system can be completely
described by two variables namely velocity and position (with respect to O). These two
variables define the coordinates of the so-called state space. If one plots the velocity (v)
as a function of position (x) of the ball one will get Fig. 1b. The solid line is called a
trajectory in the state space and apparently describes the evolution of our dynamical
system. As it can be seen the trajectory converges to point O. As a matter of fact any
other trajectory which will correspond to an evolution of the above dynamical system
from a different initial state (velocity and position) will converge to point O (i.e. no
matter what the initial state, the ball will always come to rest at point O). The point O
in the state space is called an attractor. It ‘attracts’ all the trajectories in the state space.
Apparently, the behaviour of the dynamical system in question can be completely
understood. Long term predictability is guaranteed. The evolution of that system can be
accurately predicted. The ball will always rest at point O.

So far we have discussed only one form of attractor (i.e. a point). The next simplest
form of an attractor is the limit cycle (Fig. 2). A limit cycle in the state space indicates
a periodic motion. An example of a system whose attractor is a limit cycle is the
grandfather clock where loss of kinetic energy due to friction is compensated
mechanically via a mainspring. No matter how the pendulum clock is set swinging a
perpetual periodic motion will be achieved. This periodic motion manifests itself in the
state space as a limit cycle. Again in the cases of systems which have a limit cycle as an
attractor long term predictability is guaranteed.

Another form of an attractor is a torus. The torus looks like the surface of a doughnut
(Fig. 3). In this case all the trajectories in the state space are attracted to and remain on
that surface. Some electrical dynamical systems have such an attractor. An important
characteristic of such an attractor is that any two trajectories which represent the
evolution of the system from different initial conditions and which are close to each other
when they approach the attracting surface will remain close to each other forever (see
Fig. 3). This characteristic can be translated as follows: the two points in the state space
where the trajectories enter the attractor can be two measurements (initial states) which
differ by some amount. Since these trajectories remain close to each other it means that
the states of the system at a later time are going to differ by the same amount that they
differed initially. Thus, if we know the evolution of such a system from an initial
condition we can predict the evolution of the system from some other initial condition
accurately. Again in this case long term predictability is guaranteed.

Fig. 3 Another form for an attractor is the
torus. In this case the evolution of the
corresponding dynamical system from any
initial condition will follow a trajectory in
the state space which will eventually be
attracted and remain forever on the torus.
The most important characteristic of a
system which exhibits such an attractor is
that two initially nearby trajectories on the
attractor remain nearby forever.
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The above-mentioned forms of attractors are ‘well behaved’ attractors and usually
correspond to systems whose evolution is predictable. Often they are called non-chaotic
attractors.

ATMOSPHERE: A NOT SO SIMPLE DYNAMICAL SYSTEM

The atmosphere is also a dynamical system and its evolution can be studied with the
help of the state spacé. Of course, to completely describe the evolution of the atmosphere
is a very complicated problem. However, simple mathematical models may help to
illustrate or understand atmospheric processes. Such a simple model was proposed by
Lorenz (1963). That model consists of three simple differential equations that describe
the motion of a fluid flow which travels over a heated surface. The warmer fluid formed
at the bottom is lighter and it tends to rise creating convection. When Lorenz produced
the state space he found out that again in this case all trajectories eventually converge to
an attractor which did not look like anything described above. This attractor is shown in
Fig. 4a. The most important characteristic of this attractor is that in this case two nearby
trajectories do not stay close to each other but they very soon diverge and follow totally
different paths in the attractor. That means that the evolution of the system (in this case
a simple atmospheric model) from two slightly different initial conditions will be
completely different. The above is very effectively demonstrated in Figs. 4a and 4b. The
dot in Fig. 4a represents 10000 initial conditions that are so close to each other in the
attractor that they are indistinguishable. They may be viewed as 10000 initial
atmospheric situations that differ only slightly from each other. If we allow these initial
conditions to evolve according to the rules (equations) that describe the system we see
(Fig. 4b) that after some time the 10000 dots can be anywhere in the attractor. In other
words the state of our system after some time can be anything despite the fact that the
initial conditions were very close to each other. In this case we say that our system has
generated randomness. We then see that there exist systems which even though
described by simple deterministic rules can generate randomness. Randomness
generated this way has been termed chaos. These systems are called chaotic dynamical
systems and their attractors are called strange or chaotic attractors.

The implications of such findings are profound. If one knows exactly the initial
conditions one can follow the trajectory that corresponds to the evolution of the system
from those initial conditions and basically predict the evolution forever. The problem,
however, is that we cannot have a perfect measurement. Our instruments can only
measure approximately the various parameters (temperature, pressure, etc.) which will
be used as initial conditions. Therefore, there is always going to be some deviation of the
measured from the actual initial conditions. They may be very close to each other but
they will not be the same. In such a case, even if we completely know the physical laws
that govern our system, due to the action of the underlying attractor the state of the
system at a later time can be totally different from the one predicted. Simply due to the
nature of the system, initial errors are amplified and its prediction power is very limited.
Therefore, we see that the existence of a strange or chaotic attractor coupled with the fact
that we can only know an initial situation approximately imposes, naturally, prediction
limits to the system.

The above conclusions are obtained from the study of simple dynamical systems
whose mathematical formulation is exactly known. In the absence of a mathematical
formulation of a dynamical system, the dynamics can be inferred from a single record of
an observable variable X(t) from that system. The physics behind such an approach is
that a single record from a dynamical system is the outcome of all the interacting
variables and thus information about the dynamics of that system should be included in
any observable variable. The mathematical procedure to prove the existence and nature
(chaotic or not) of an attractor is rather elaborate and beyond the scope of this paper.
Those that are interested for more details on the mathematics should refer to Packard et
al. (1980), Takens (1981), Rouelle (1981) and Tsonis and Elsner ( 1988). Returning to
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By courtesy of Dr James Crutchfield

4 (a) An example of a strange attractor with implications in the forecasting the weather
problem. This structure in the state space represents the attractor of a fluid flow which travels
over a heated surface. All trajectories (which will represent the evolution of that system for
different initial conditions) will eventually converge and remain on that structure. However,
any two initially nearby trajectories in the attractor do not remain nearby but they diverge.

By courtesy of Dr James Crutchfield

4 (b) The effect of the divergence of initially nearby trajectories in the attractor: The dot in
Fig. 4 (a) represents 10000 measurements (initial conditions) which are so very close to each
other that they are practically indistinguishable. If we allow each one of these states to evolve
according to the rules, because their trajectories diverge irregularly, after a while their states
can be practically anywhere.



our subject the atmosphere is obviously far more complicated than the simple system
investigated by Lorenz. Because of that, complete and/or exact mathematical
formulation of the atmospheric processes has not yet been developed. Soon, therefore,
observable weather variables were considered in the search for attractors in weather and
climate. Nicolis and Nicolis (1984) used oxygen isotope records of deep-sea cores
spanning the past million years. These data are related to temperature fluctuations during
that time interval. Fraedrich (1986) used daily pressure data over a period of 15 years
and Essex ez al. (1987) used daily geopotential data over the last 40 years. Lately, Tsonis
and Elsner (1988) extended the analysis to very short time scales using 10 second
averages of vertical wind velocity over 11 hours. In each one of the above studies it has
been concluded that an attractor is present. It should be mentioned, however, that these

research on this area will provide many clues about the interactions between different
time scales.

CONCLUSION

Many systems in nature are chaotic. The developments in the study of chaotic
dynamical systems have suggested that nature imposes limits in prediction. At the same
time, however, it has been realized that the very existence of the attractors implies that
randomness is restricted to the attractors. The atmosphere may be chaotic but its
evolution is confined in a specific area in the state space which is occupied by the
attractor. No states outside this area are allowed. The winds, for example, associated
with a high pressure system can never be blown counterclockwise. Something more

intense than a hurricane cannot exist.

be that generalizations based on the study of specific cases (which may never happen
exactly again) can no longer be appropriate.
Together with some pessimism the study of chaotic dynamical systems provides
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