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Chaos: principles and implications in biology

Panagiotis A.Tsonis and Anastasios A.Tsonis!

Abstract

In this paper we review some of the basic principles of the theory
of dynamical systems. We introduce the reader to the defini-
tion of chaos and strange attractors and we discuss their im-
plications in biology.

Over the last decade physicists, astronomers, biologists and
scientists from many other disciplines have developed a new
way of looking at complexity in nature. This new way has been
termed ‘chaos’. Chaos, which is defined as randomness
generated by simple dynamical systems, allows us to see order
in processes that were thought to be completely random. It is
the purpose of this paper to introduce the reader to the concept
and implication of chaos in biology.

In the preceding paragraph the term ‘dynamical systems’ was
used. What is a dynamical system? In simple terms it is a system
whose evolution from some initial state (which we know) can
be described by some rule(s). These rules are conveniently
expressed as mathematical equations. The evolution of such a
system is best described by the so-called state space. Let us
first give an example of a simple dynamical system and its state
space.

A pendulum is allowed to swing back and forth from some
initial state as described in Figure la. This initial state can be
completely described by the speed and position of the pendulum.
The position of the pendulum at any time can be given by the
angle x. Under such an arrangement, Newtonian Physics
provide the equations (rules) which describe the evolution of
that initial state in time.

Let us assume that to begin with the pendulum is held at
position 1. Then its initial state will be x = x;, and velocity
v = 0. The pendulum is then let free. As the pendulum moves
towards point 0, its speed increases due to gravity accelera-
tion. Therefore, after a while (position 2) the pendulum will
be closer to point 0 and will have a higher speed. Once the
pendulum crosses point O its speed decreases because now
gravity acts in a direction opposite to its motion. Therefore at
some point (position 3) the pendulum’s speed will become zero
again. Immediately after that the pendulum will begin to swing
back, and after it crosses point O it will once again attain, at
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some point, a zero speed (position 4). Because there is always
some friction, however, the points at which the speed becomes
zero (to the right and left of point 0) are not fixed but are found
closer and closer to point 0. Finally the pendulum will come
to rest at point 0.

Apparently, the evolution of the above dynamical system can
be completely described by two variables, namely velocity and
angle x. These two variables define the coordinates of the so-
called state space. If one plots the velocity (v) as a function
of the angle (x) of the pendulum one will get Figure 1b. The
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Fig. 1. (a) A dynamic system is a system whose evolution from initial state
can be determined by some rules. In the above figure the motion of the pendulum
can be completely described by the laws of physics if its initial position and
velocity are known. (b) A useful concept in studying the evolution of dynamical
system is the state space. The coordinates of the state space are necessary
variables that are needed to completely describe the evolution of the dynamical
system in question. In our example these coordinates are the velocity and the
angle x of the pendulum. As the pendulum swings back and forth it follows
a trajectory in the state phase which converges to a fixed point. This point is
called an attractor of the dynamical system.
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Fig. 2. Another form of an attractor is the limit cycle. In this case all trajectories
are attracted by the limit cycle which represents a period evolution. The
grandfather clock is a system which possesses a limit cycle as an attractor.
Another familiar system with a limit cycle as its attractor is the heart.

solid line is called a trajectory in the state space and apparently
describes the evolution of our dynamical system. As it can be
seen, the trajectory converges to point 0. As a matter of fact,
any other trajectory which will correspond to an evolution of
the above dynamical system from a different initial state
(velocity and angle) will converge to point O (i.e. no matter
what the initial state, the pendulum will always come to rest
at point 0). The point 0 in the state space is called an attractor.
It ‘attracts’ all the trajectories in the state space. Apparently,
the behavior of the dynamical system in question can be
completely understood. Long-term predictability is guaranteed.
The evolution of that system can be accurately predicted. The
pendulum will always rest at point 0. Point attractors, therefore,
correspond to systems that reach steady state of no motion.

So far we have discussed only one form of attractor (i.e a
point). The next simplest form of attractor is the limit cycle
(Figure 2). A limit cycle in the state space indicates a periodic
motion. An example of a system whose attractor is a limit cycle
is the grandfather clock where loss of kinetic energy due to
friction is compensated mechanically via a mainspring. No
matter how the pendulum clock is set swinging a perpetual
periodic motion will be achieved. This periodic motion
manifests itself in the state space as a limit cycle. Again, in
the cases of systems which have a limit cycle as an attractor,
long-term predictability is guaranteed.

Another form of an attractor is a torus. The torus looks like
the surface of a donut (Figure 3). In this case all the trajec-
tories in the state space are attracted to and remain on that
surface. Systems that possess a torus as an attractor are quasi-
periodic. In a quasi-periodic evolution a periodic motion is
modulated by a second motion, itself periodic, but with another
frequency. The combination of frequencies will produce a time
series whose regularity is not clear. The power spectrum,
however, should consist of sharp peaks at each of the basic
frequencies with all its other prominent features being com-

Fig. 3. Another form for an attractor is the torus. In this case the evolution
of the corresponding dynamical system from any initial condition will follow
a trajectory in the state space which will eventually be attracted and remain
forever on the torus. The most important characteristic of a system which exhibits
such an attractor is that if the two involved frequencies have no common divisor
two initially nearby trajectories on the attractor remain nearby forever.

binations of the basic frequencies. Geometrically a quasi-
periodic trajectory fills the surface of a torus in the appropriate
state space. An important characteristic of such an attractor is
that when the two frequencies have no common divisor any
two trajectories which represent the evolution of the system from
different initial conditions and which are close to each other
when they approach the attracting surface will remain close to
each other forever (see Figure 3). This characteristic can be
translated as follows. The two points in the state space where
the trajectories enter the attractor can be two measurements
(initial states) which differ by some amount. Since these
trajectories remain close to each other it means that the states
of the system at a later time are going to differ by the same
amount that they differed initially. Thus, if we know the
evolution of such a system from an initial condition we can
predict the evolution of the system from some other initial
condition accurately. Again in this case long-term predictability
is guaranteed.

The above-mentioned forms of attractors are ‘well behaved’
attractors and usually correspond to a system whose evolution
is predictable. Often they are called non-chaotic attractors. In
mathematical terms the above-mentioned attractors are
topological submanifolds of the available state space.

In 1963, Lorenz, in a paper which started everything,
discovered a system which under certain circumstances
possessed an attractor that did not look like anything described
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Fig. 4. (a) An example of a strange attractor. This structure in the state space represents the attractor of a fluid flow which travels over a heated surface. All
trajectories (which will represent the evolution of that system for different initial conditions) will eventually converge and remain on that structure. However,
any two initially nearby trajectories in the attractor do not remain nearby but they diverge. (Figure courtesy of Dr James Crutchfield.) (b) The effect of the
divergence of initially nearby trajectories in the attractor. The dot in (a) represents 10 000 measurements (initial conditions) which are so very close to each
other that they are practically indistinguishable. If we allow each one of these states to evolve according to the rules, because their trajectories diverge irregularly,
after a while their states can be practically anywhere. (Figure courtesy of Dr James Crutchfield.)

above. Lorenz was experimenting with a very simple model
of three differential equations that describe the motion of a fluid
flow which travels over a heated surface. The warmer fluid
formed at the bottom is lighter and it tends to rise, creating
convection. The attractor of this dynamical system is shown
in Figure 4a. Since the state of the system is described by three
equations the state space has three coordinates. Not only does
this attractor not look like anything described above, but also
it has two very important properties: (i) the evolution described
by a trajectory is deterministic but strictly nonperiodic (never
repeats itself); and (ii) as with all attractors all trajectories
converge on the attractor but two nearby trajectories do not stay
close to each other but they very soon diverge and follow totally
different paths in the attractor. That means that the evolution
of the system from two slightly different initial conditions will
be completely different. The above is very effectively demon-
strated in Figure 4a and b. The dot in Figure 4a represents
10 000 initial conditions that are so close to each other in the
attractor that they are indistinguishable. They may be viewed
as 10 000 initial situations that differ only slightly from each
other. If we allow these initial conditions to evolve according
to the rules (equations) that describe the system we see (Figure

4b) that after some time the 10 000 dots can be anywhere in
the attractor. In other words, the state of our system after some
time can be anything despite the fact that the initial conditions
were very close to each other. Apparently, the evolution of the
system is very sensitive to initial conditions. In this case we
say that our system has generated randomness. We then see
that there exist systems which even though described by simple
deterministic rules can generate randomness. Randomness
generated this way has been termed chaos. These systems are
called chaotic dynamical systems and their attractors are called
strange or chaotic attractors. These attractors are not topological
submanifolds of the total available space, but they are fractals
(Mandelbrot, 1983; Tsonis and Tsonis, 1987; Tsonis and
Elsner, 1988).

We now proceed in presenting an example of a biological
system with a variety of periodic and chaotic solutions. The
system is described by the following ‘logistic’ difference
equation which is used to model population dynamics (May,
1976):

X,+1:aX,(1—X,),0<X<l,1<a<4

This equation relates the population of a given generation X,
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Fig. 5. Based on the equation X, , | = aX,(1 — X)) this figure shows the population evolution from some initial condition X, and for different choices of the

parameter a: (a) for X, = 0.2 and a = 2.707 the population finally reaches a steady state of no change; (b) for X, = 0.2 and @ = 3.35 the population becomes
periodic of period two (i.e. it repeats every two generations); (c) for X, = 0.2 and a = 3.5 the population becomes periodic of period four; (d) for a = 3.829
the evolution becomes chaotic with no distinct periodicity. The solid line shows the evolution from an initial value of X, = 0.1 and the broken line from an
initial value of X, = 0.101. After some time the two evolutions are completely different. This demonstrates the very important characteristic of chaotic dynamics
referred to as the divergence of initially nearby trajectories. Due to the underlying chaotic dynamics the initially close trajectories diverge irregularly. Such divergence
cannot be observed for the periodic cases which are not sensitive to fluctuations in the initial conditions. The above results can be obtained by pressing a button
in a programmable calculator. Type in fix) = ax(1 — x) choose your a and enter your first value (initial condition). Press the button. The number X, will then
appear on the display. Press the button again. The number X, will appear and so on.

to the population of the next generation X, ;. The parameter
a is called the nonlinearity parameter and it represents a growth
rate which may be related to the food supply, to fertility, etc.
The philosophy behind this equation is that it represents a
function which increases when the population is small, reduces
growth at intermediate values and decreases as the population
becomes large. By iterating (repeating) the above equation one
can obtain the population’s evolution from some initial value
for a given choice of the parameter a. The dynamics of the
logistic equation have been studied extensively by May (1976)
who discovered an amazing variety of possible evolutions as
the parameter a was varied. For a value of a <3.0 the
population settles into a steady state (no change). As the

parameter a is varied slightly >3.0 something surprising
happens. The population now settles into a period-two (repeating
every other generation) oscillation. A further increase of a and
the evolution becomes a period-four oscillation (repeating every
four generations). The ‘magic’ continues as the nonlinearity
parameter increases by giving rise to periods increasing in
powers of 2(2°, 24, 2°. . .). And then this period doubling
comes to an end when for a value of @ >3.5700 the evolution
becomes chaotic (or strictly speaking periodic with a period
2%).

This means that the evolution even though deterministic is
for all practical purposes nonperiodic. The system is said in
this case to oscillate with no recognisable frequency (chaotic
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Fig. 6. This figure shows results from a diffusion —reaction model for biological
pattern formation used by Tsonis et al. (1989). The model begins with adjacent
cells which are allowed to evolve from some initial steady state which is slightly
perturbed. Then by numerical integration the evolution of each cell is obtained.
The figure shows the evolution of one of the cells. As it can be seen the trajectory
is irregular and ‘wanders’ on a well-defined area of the state space which looks
‘strange’. This is an indication of a chaotic evolution. For more details see Tsonis
et al. (1989).

evolution). As was the case with the Lorenz system, in this case
as well, small uncertainties in the initial conditions can drive
the system to completely different evolution (see Figure 5 for
an illustration of the above).

Soon after that chaos invaded biology Glass et al. (1987)
showed that clinically observed irregular cardiac rhythms may
be associated with determinism in mathematical models of the
intact human heart. Similarly Glass and Mackey (1979)
demonstrated that respiratory and hematological arrhythmias
are associated with chaos. Martiel and Goldbeter (1985) found
that aperiodic oscillations (chaos) in cAMP synthesis can
significantly affect the morphogenesis of Dictyostelium
discoideum.

King et al. (1984) reported on the behavior of a mathematical
model which described the dynamics of the central
dopaminergic neuronal system. They found that for certain
values of a parameter which monitors the efficacy of dopamine
at the postsynaptic receptor chaotic solutions appear. They also
found that predicted transitions to chaotic regimes correlate well
with the observed increased variability in behavior among
schizophrenics, and the lability of mood in some patients with
an affective disorder. Hess and Markus (1987) reported on
chaos in glycolysis, observed under certain conditions, in yeast
extracts subjected to a sinusoidal input flux of glucose. Nicolis
(1988) showed that one-dimensional spatially asymmetric and

information-rich sequences, like the ones observed in biopoly-
mers carrying biological information , may be generated from
a time-irreversible dynamics possessing a chaotic attractor.
Ohno (1988) found that chaos is applicable to coding sequences
of the genetic material. Tsonis er al. (1989) demonstrated that
when biological pattern formation is modelled according to a
forced reaction —diffusion process chaotic solutions are possible.
Their model predicts the evolution of a row of adjacent cells
from some slightly perturbed steady state. Their results suggest
that, depending on the choice of some controlling parameters,
periodic, quasi-periodic and chaotic patterns may emerge
naturally from the interplay of a simple reaction—diffusion
process and an external forcing. An example of their results
is given in Figure 6 which shows the evolution of a randomly
selected cell. The trajectory follows an irregular path on a
strange attractor and thus the evolution is chaotic. In such a
case an ‘irregular’ pattern will emerge.

The implications of chaos are profound. If one knows exactly
the initial conditions, one can follow the trajectory that
corresponds to the evolution of the system from those initial
conditions and basically predict the evolution forever. The
problem, however, is that, because of the always present
microscopic random fluctuations, any initial condition is only
approximately known. In such a case, even if we completely
know the physical laws that govern our system, due to the action
of the underlying attractor, the state of the system at a later
time can be totally different than it would have been if we knew
exactly the initial condition. Simply, due to the nature of the
system, initial microscopic errors are amplified to a macroscopic
scale. In this case we say that the prediction power of the system
is very limited. Therefore, we see that the existence of a strange
or chaotic attractor, coupled with the fact that we can only know
approximately an initial situation, naturally imposes prediction
limits to the system. However, the macroscopic randomness
is confined in a very well-defined region of the total available
state (the attractor) and, thus, in chaos there is some underly-
ing order. This, together with the fact that a chaotic trajectory
is quite deterministic, suggests that processes that look com-
pletely random may be in fact chaotic and thus more predictable
and describable than they were thought to be.

Chaos has opened new horizons in science and it is already
considered by many the third most important discovery in the
twentieth century, after relativity and quantum mechanics.
Philosophically speaking, chaos has brought some pessimism
since it imposes limits on prediction. At the same time,
however, it has offered a new forum for the understanding and
description of irregularity, complexity and unpredictability in
Nature.
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