FRACTALS: A NEW LOOK AT BIOLOGICAL SHAPE
AND PATTERNING

ANASTASIOS A. TSONIS* and PANAGIOTIS A. TSONIST

It is accepted beyond any doubt that biological shape is related to
function. Numerous examples could be mentioned. Folding of a protein
is important for its function [1]. The shape of a cell accounts for differ-
ential DNA synthesis [2]. Left-handed DNA relates to specific function
of genes [3]. The patterning of biological form has intrigued develop-
mental biologists over the last decades. However, there are no satisfac-
tory qualitative and quantitative models from which to infer statistical
properties and theories that directly relate biological shape to function.

Part of the problem lies in the fact that biological structures often
cannot be described within a straightforward Euclidean framework.
Similar problems are encountered in many other fields of science. For
example, clouds are not cubes or spheres, coastlines are not circles,
lightning is not straight lines, and so forth. Euclidean geometry leaves
these structures without a framework that can be used to quantitatively
describe them. Nature is full of such structures. As a matter of fact, it is
the Euclidean structures that are rarely found in nature. In the absence
of a mathematical framework for the “amorphous” patterns, theories or
models that are devised in order to explain and/or describe those pat-
terns are inadequate.

Lately, a new geometry has been developed in order to describe the
irregular and fragmented non-Euclidean patterns of nature. It is called
fractal geometry. In order to introduce the reader to the concept of frac-
tals, some familiarity with the notion of dimension is needed. We there-
fore suggest at this point that the reader consult figure 1.
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FiG. 1.—There are two basic definitions of dimension: the Euclidean (D) and the to-
pological (D7). They both can assume only the integer values 0, 1, 2, 3, but, for a specific
object, they may not be the same. In order to divide space, cuts that are called surfaces are
necessary. Similarly, to divide surfaces, curves are necessary. A point cannot be divided
since it is not a continuum. Topology tells us that, since curves can be divided by points
which are not continua, they are continua of dimension one. Similarly, surfaces are con-
tinua of dimension two, and space is a continuum of dimension three. Apparently, the
topological dimension of a point is zero. According to the Euclidean definition, a
configuration is called E-dimensional if the least number of real parameters needed to
describe its points is E. For example, to describe the points of a straight line, one needs only
the x, say, coordinates of those points. Therefore, D of a straight line is one. On the other
hand, to describe the points of the curve (b) above, one needs the coordinates of the points
in x and y. Therefore, D, of that curve is two. Similarly, in order to describe the points of
the surface (d), one needs the coordinate of the points in x, y, and z. Therefore, D, of that
surface is three. The quantity D is the fractal dimension (see text for explanation).



The concept of fractals can be introduced by a classic example given
by the founder of fractals, Mandelbrot [4]. Let us assume that we mea-
sure the length of a given segment of a straight line by employing a
measuring unit (yardstick) of length e. With this yardstick we walk along
the line, each new step starting where the previous step leaves off. If the
number of steps is N(€), then € X N(¢) is a measure of the length, L(e), of
that segment. As we repeat the same procedure but with smaller and
smaller €, the number of steps, N(€), becomes greater and greater. The
measured length, however, remains the same. If one plots the logarithm
of N(e) against the logarithm of €, one finds that all the points fall on a
straight line of a negative slope, S. One may, therefore, write that N(e) «
€*and L(e) x €' *5. By setting S = — D, one may write that N(e) < € " and
L(e) « €' ~P. The quantity D is called the similarity dimension or the
Hausdorff-Besicovitch dimension (see [4] for more details), and by de-
sign it preserves the ordinary dimension’s role as exponent in defining a
measure. In the case of straight lines or other geometrical curves, D = 1,
which coincides with the topological dimension of any curve. When,
however, we repeat the above procedure considering some irregular
curve that cannot be described by Euclidean geometry, such as a coast-
line, we find that, as € becomes smaller and smaller, L(¢) tends to increase
without bound. The reason is that for smaller and smaller €, more and
more details of the coastline appear that add to the measured length. In
such cases, it is again found that N (e) x e “? and L(e) « ¢! ~?, but now D >
1 and need not be an integer! Based on the above, Mandelbrot [4] gives
the following definition of a fractal: A fractal is a set for which the
Hausdorff-Besicovitch dimension (or fractal dimension), D, strictly ex-
ceeds the topological dimension, D. The above arguments can be ex-
tended for structures of higher topological dimensions. It should also be
mentioned that for fractals, D < D, where D, is the Euclidean dimension
of the space in which the set is embedded. The great success of fractals
lies in the fact that shapes of common origin (clouds, for example) ex-
hibit a reproducible fractal dimension (i.e., they exhibit the same D) no
matter how different they appear. The fractal geometry thus provided a
geometric mathematical framework for the description of irregular and
fragmented patterns that appear random and led to the development of
models that generate fractal structures, thus throwing light on some of
the underlying processes that govern the formation of these patterns.

Recently, fractal geometry has gained popularity, has been applied to
several biological systems, and has succeeded in unifying and/or ex-
plaining several biological and physiological phenomena. The fractal
geometry of vegetation, for example, led to important considerations
about the insects inhabiting the leaves and their body-size-related metab-
olism [5]. It was found that, when the fractal nature of vegetation is
considered, there is more usable space for smaller animals living on
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vegetation than for larger animals, and it was demonstrated that in this
case there are more individuals with a small body length than a large
body length. Irregularly shaped cells in vitro have an identical fractal
dimension, and so do their tracks as they move [6]. The examination of
the degree of irregularity of protein surfaces led to the conclusion that
individual regions of protein show considerable variation in their fractal
dimension [7]. These variations may be related to structural features,
such as active sites, suggesting that protein surface texture may be a
factor influencing molecular interactions. At the same time, nonequilib-
rium models that simulate fractal structures which resemble structures
in nature were developed, and fractal geometry provided an invaluable
tool in verifying these models. These models involve both determinism
and chance, and they are called nonequilibrium growth models because
randomness dominates the structures that they produce. The first such
model was the so-called Diffusion Limited Aggregation (DLA) model,
according to which well-defined fractal structures are generated by add-
ing “particles” to a growing cluster or aggregate via random-walk trajec-
tories [8]. (A point is said to perform random walk if, at successive
instants of time separated by the interval At, it moves by steps of fixed
length | Al | in randomly selected directions. Random walks simulate
Brownian motion, which is the motion of a particle suspended in a
liquid.) Such a model simulates successfully phenomena like the viscous
fingers that are generated if one attempts to use a low-viscosity fluid (like
water) to push a high-viscosity fluid (like oil). This process gives rise to a
fluid instability phenomenon in which the low-viscosity fluid forms char-
acteristic fingers extending well into the high-viscosity fluid [9, 10]. A
number of closely related models followed according to which fractal
structures are generated by adding points of a two-dimensional lattice to
a growing cluster via a growth probability. According to this technique,
at each step there are specific candidates (lattice sites) that can be added
to the growing cluster. Each one of those points is associated with a
probability (which is termed growth probability). From the probabilities
of all candidates, a probability distribution is defined from which a point
is selected randomly and added to the evolving structure. For example,
in physics, dielectric breakdown was accurately simulated by assuming
that the growth probability is, at each time step, a function of the local
potential field [11]. Similarly, the development of morphology in biolog-
ical systems was explored by assuming that the growth probability de-
pends on the local concentration of some substance that diffuses from a
surrounding exterior source and is consumed by the growing system
[12]. Even though direct comparison with biological patterning was not
attempted, models like the above can indeed account for developments
of biological systems like the development of blood vessels. Figure 2
shows the observed pattern of developing blood vessels around a 4-day-
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FiG. 2.—Patterns of developing blood vessels around a 4-day chick embryo

old chick embryo. The similarity of this pattern to the pattern in
figure 3 which has been generated by Meakin [12] is striking and sup-
ports his proposed model for biological pattern formation. The fractal
dimension of the pattern in figure 2 is close to 5/3, which is very similar
to the fractal dimension of the simulated pattern in figure 3. The ap-
proach used to infer the fractal dimension of figure 2 can be found in
[I1]. In addition, the fractal dimension of the pattern in figure 2 is
similar to the fractal dimension of structures that mimic dielectric break-
down [11] and viscous fingering [10].

What is the driving force of generation of such structures in the circu-
lation system (or nervous system)? And, How do these structures ac-
count for the physiology? The fractal dimension of the blood vessels and
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F16. 3.—Computer-generated pattern according to the nonequilibrium growth model
proposed by Dr. P. Meakin (courtesy of Dr. P. Meakin).

the similarities with other defined systems suggest that their generation
should be explained by a nonequilibrium growth which depends on the
concentration of one or some substance(s) that diffuses from the cells
that build up the circulation system, and on chance. The fractal geome-
try thus allows us (1) to speculate that reactions occurring in physical
phenomena can be applied to biological phenomena, (2) to verify models
that describe various phenomena, (3) to understand some of the physical
and chemical processes behind biological patterning that appear to be
random, and (4) to quantitatively establish via a reproducible fractal
dimension the relation between shape and function.

The elucidation of the fractal patterns in biological systems and their
significance in the physiological events will support the notion of the
uniqueness of the fractal geometry of nature. The very question is, Why
should physical or biological phenomena develop by fractal geometry?
Work by one of us (A. A. Tsonis, unpublished) has related fractal pat-
terning to minimum energy consumption. Such an idea would indeed
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make perfect sense. The fractal way of nature should simply be the most

economical.
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