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ABSTRACT  The use of short-term predictions of rain flux from isolated showers is discussed in
the context of the design and evaluation of cloud-seeding experiments. It is found that for a
sample of 85 seeded convective clouds a seeding effect of 25% could be detected at the 10%
significance level.

RESUME  L’utilité des prédictions a court terme de la pluie qui tombe en averses isolées est
discutée dans le contexte de la planification et de I’ évaluation d’ un projet d’ ensemencement de
nuages. On a trouvé que pour les nuages convectifs, un effet d’ ensemencement de 25% pourrait
étre détecté au niveau significatif 10% avec 85 expériences.

1 Introduction

One of the most important problems encountered in the design and evaluation of a
cloud-seeding experiment is the natural variability of rainfall from one experimental
unit (i.e. cloud) to the next. When the experiment utilizes a rain-gauge network, an
additional problem is the network sampling variance (McGuinness, 1963). However,
if the gauge density of the network is reasonably high, the latter source of variability is
not as important as cloud variability (Silverman et al., 1981). When a weather radar is
used, sampling variability is insignificant.

Total sample size requirements for detecting seeding effects, as well as for
evaluation procedures, depend to a great extent on the statistic used in evaluating the
outcome of an experiment. A common procedure makes use of a transformation of the
total rain amount, say R. Examples are log R (Biondini, 1976) and R (Simpson,
1972). Although the distributions of these transformed variables fit (unseeded) data
quite well over the bulk of observed histograms, the gamma (R*) and lognormal (log
R) distributions retain long tails. Thus, they have low power and consequently require
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rather long experimental periods for the detection of moderate seeding effects. The
power of cloud-seeding experiments might be enhanced through the use of
covariates, such as cloud stability, lifted cloud-top temperatures, and echo-top height
(Vardiman and Moore, 1978; Rottner et al., 1980). Unfortunately, none of the
covariates considered seems to have been established as having significant impact in
this regard. The purpose of the present study is to present a new statistic and develop a
technique for the evaluation of seeding experiments that has a greater likelihood of
detecting a seeding effect, for any given experimental design, and thus requires fewer
experimental units to detect the seeding effect at any level and for any preselected
probability of detection.

We use radar data to illustrate our analysis, although, as it will become clear later,
the same analysis could be carried out for a reasonably dense gauge network. It is
recognized that seeding may modify the drop size spectrum thus introducing
difficulties in the evaluation procedure. However, there is no evidence that such a
modification would mask a real seeding effect. For the purpose of this work, radar
rainfall measurement introduces some advantages. Rain cells can be followed in
time, and records of their behaviour are available for detailed examination.

2 Data base

The analysis described here is based on weather radar images of convective cells from
the GATE experiment in the Tropical Atlantic in 1974, and data recorded in 1980
from the MRL-5 radar in Spain during the Precipitation Enhancement Project (PEP)
experiment. A computer program was used to identify, isolate and calculate the area
and flux of rain (area X average rainfall rate) of each cell from the digital magnetic
tapes and to print out PPIs in which individual cells are identified by a cell number.
The spatial resolution for the GATE data was 4 km X 4 km, and for PEP data, 2 km X
2 km. The temporal resolution was 5 min for all of the data sets, which allowed
individual cells to be followed in time. In this study “cell” means any isolated patch of
rain appearing as an echo on the radar maps, regardless of its size.

Cells were selected by following their history through the map sequence. Each cell
was followed from the beginning of its “radar life” up to its end, its flux and area being
noted at every time step (5 min). Cells that existed when the radar was switched on or
that moved into radar range are considered in the sample as well, since these
situations represent real occurrences in a radar data set. During their lifetimes cells
can merge with other cells or split; it is a matter of arbitrary definition as to how
merging or splitting is regarded. For this study the following procedure was adopted:
1 If a “parent” cell splits and the two (or more) “daughter” cells continue, separated

on the radar map by a distance of at least four grid points, then the parent ends and

the new cells begin their lifetimes.

2 If a parent cell splits and the daughter cells later rejoin, then the parent is assumed
to continue its lifetime, ignoring the birth of the daughters.

3 If two (or more) cells exist separately for 15 min or more and then merge and
remain merged, a new cell is considered to have started its lifetime, while the two

(or more) original cells are considered to have ended theirs.
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4 1If two cells exist separately, merge and separate then the merging is disregarded.
The flux of the cells while merged is found by linearly interpolating the fluxes
before and after the merging.

The cells included in the sample are long-lasting cells, with lifetimes greater than 100

min. Itis understood that for a real experiment, revisions would be needed to redefine

the control subset of the original data. Even though cloud lifetime is very important,
not much research has been performed in this field. Therefore, there is insufficient
knowledge connecting “seedability” and cloud lifetime. Schemenauer and Isaac

(1980) state that a cell should last at least 20 min after seeding (see also Isaac et al.,

1982) in order for the ice crystals generated to grow to precipitable sizes and fall out of

the cloud. In a more recent study, Schemenauer and Isaac (1984) conclude that

clouds with cloud-top lifetimes of about 20 min may have the potential to be seeded.

Dennis (1980) also recognizes the importance of longer-lasting cells in a weather

modification project. In general, one should have enough time to decide whether or

not a cell will be seeded, to send the airplane, to perform the seeding and to follow the
cell for areasonably long period. Thus, the use of longer-lasting cells is justified from
the practical point of view. The above, however, does not support the use of cells
lasting 100 min or so, and that is not our purpose. The data used in this work merely
illustrate the proposed method. The idea behind this paper was the use of rain-flux
predictions in the design and evaluation of a cloud-seeding experiment. In order to
evaluate various predictive schemes, the use of longer-lasting cells was necessary

(Tsonis and Austin, 1981). In a more general approach, however, the restriction of

using long-lasting cells can be removed.

3 Statistic used

Suppose that at time T a cell is seeded and that, before seeding, a technique is
available that allows exact knowledge of what the flux of this cell will be at time T +
At, say, for At = 30 min. Then even with one seeding experiment it would be possible
to know whether or not seeding has any effect. Naturally, the perfect forecast
technique does not exist. However, the observed distribution of errors in the forecast
technique can be used as a statistical means to test for seeding effects. The feasibility
of using predictions of rainfall patterns in the verification of cloud seeding was first
discussed by Nason and Lopez (1967). Their method involves fitting a plane or some
higher order mathematical surface to the control area data and extending this surface
through the target area. The target predictions represent the rainfall expected with no
seeding; and these values are then compared with measured amounts to determine the
seeding effects. This was done using a rain-gauge network at the control target area; it
was concluded that the method is not acceptable for convective type precipitation,
mainly because of its great spatial variability.

In this section use will be made of the results presented by Tsonis and Austin (1981)
concerning errors in the forecasting of rain flux. It was shown there that the
assumption of steady state with translation produces forecasts with an accuracy as
high as that of more elaborate extrapolation schemes and it will be used for the
analysis described below. It should be noted that any other forecast scheme of
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comparable or better accuracy could also be used. The statistic proposed and used in
this study is defined as follows:

Fy— Fo

Y~ max (F,, Fo) t

where F ris the forecast total flux of the cell and Fy is the observed total flux. Clearly
the distribution of y will be bounded by —1 and +1. According to our method of
forecasting, we have:

Fsz, and F0=Ft+At

_Therefore, Fy — Fy is a measure of the change in the total flux of a cell in the time
interval Az. We may choose At = 30 min, for example, so that

x=—y= Fri30 — F,
max (F 430, Fy)

2

and denote the density function of this statistic by f(x). The x statistic will suffer to
the same extent as the transformations R!, log R, etc., if the assumption of a
multiplicative seeding effect is not valid. In such a case, transformations (especially
the non-linear ones) may distort treatment effects (Dennis, 1980). However, it
precludes the impact of a long-tailed distribution on the power of a statistical test for
seeding effect. The choice of Ar = 30 min in (2) does not imply that we expect that
any effect will be detectable after 30 min. This interval was chosen for demonstration
purposes only. The effect of choosing another interval will be discussed later.

4 Growing and decaying cells — GATE data set

The cells that are crossing a given area are in either a growing or a decaying stage.
That means that the distribution of x will contain information from growing as well as
from decaying cells. Accordingly, the distribution can be considered a mixture of two
other distributions, say, with density functions d(x) and g(x), where d stands for
decaying and g for growing. From the point of view of the design and evaluation of a
weather modification experiment, this may not be desirable since it might be that
seeding modifies growing and decaying cells in different ways, simply because
precipitation enhancement is closely connected with natural precipitation mecha-
nisms and cloud microphysics, which are different in growing and mature clouds.
Commenting on this point, Dennis (1980) suggests that only growing clouds should
be seeded. However, even though there is not much scientific evidence about how
seeding acts in different cloud stages, the stratification of the data into growing and
decaying cells would probably be desirable in any experimental design. Most of the
cells in the sample were clearly in either the decaying or growing stage, although a
few initially grew and then decayed. For these cases, the cells were categorized as
either growing or decaying depending on the predominant phase. In a real-time
operation the classification into growing and decaying cells can be possibly auto-
matically achieved by the measurement of the vertical reflectivity profile of the cell
(Massambani, 1982). For these reasons, decaying and growing cells are considered
separately.
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In presenting the method we take the following steps in the order given:
Selection of the samples (i.e. growing and decaying) for the control cases.
Determination of the parameters of the distributions for the control cases.

The generation of a simulated data set (real data + assumed seeding effect).
Determination of the parameters of the distribution for the seeded data.
Determination of the necessary number of experiments (i.e. seeded cases) in order
to detect a seeding factor at specified confidence levels.

Steps 1 and 2 are described in Tsonis (1982) where statistical procedures are
presented for the estimates of p,, o, and p,, 0. Here p, and p, denote the means
of the distributions for the growing and decaying cells, respectively, and o, and o,
their corresponding standard deviations. For the control samples, 100 values of x for
the decaying cases and 97 for the growing cases were measured. The estimation
procedures demonstrate that the sample means and standard deviations remain
practically unchanged for sample sizes greater than 40. In this way, good estimates of
Mg, Ma, O, and o, were obtained. The estimated values are:

e =0.12 o, = 0.37

O S R S

It is useful to recall that the two distributions (for growing and decaying cases) are
not antisymmetric. The reason is that the fluctuations of the flux in time are generally
greater and more frequent in a growing stage than in a decaying one; i.e. the chance of
getting a negative value of x from a growing cell is higher than that of obtaining a
positive value of x from a decaying cell. Therefore, the absolute value of ., will be
less than the absolute value of w,. Moreover, according to the above, the standard
deviation o4 should be expected to be slightly less than o,. The estimated values of
Mg, Mg, 04 and o, are fully consistent with these expectations.

5 Determination of the number of experiments as a function of the seeding
factor

a Growing Cells

The distribution of x for the growing cases, as defined, is to be bounded at both sides,
i.e. at —1 and +1. Even though this distribution is bounded and is relatively narrow
compared to other distributions used in weather modification experiments (log-
normal, gamma, etc.), it is very sensitive to seeding effects. Figure 1 shows a
comparison of the frequency histogram of the unseeded (control) cases with a
frequency histogram of the simulated cases when the multiplicative seeding factor r
= 1.4 (40% increase) is assumed. It is evident that for increasing r more positive
values are produced and the distribution for the seeded cases narrows and shifts
towards + 1. Obviously, when negative seeding effects are assumed, the distribution
will shift towards —1 as r approaches 0.0.

Therefore, the distributions of the seeded cases will be dependent on r, each with a
mean and a standard deviation that are functions of r, namely, w, and o,
respectively.

For a multiplicative seeding factor r, if the exact distribution g(x) is known, it
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Fig. 1 Simulated frequency histogram of x for the
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would be possible for g, and o, to be defined analytically. However, it is possible to
seek an expression for p,, — p . as a function of the seeding factor r, if 7 is assumed to
be a constant multiplicative factor acting, say, 30 min after seeding. In this case, one
would simulate values of ¥ and X, from the control sample where £ is the sample mean
value of x for the unseeded cases and x, is the sample mean value of x when a
multiplicative seeding factor r is assumed; i.e.

< (Friso)i — (F)); N g (Fri30); — (Fp);

= i=1 (F430); i=1 (F));
n]-+ ny
or
n<Ft+3O>_n<Ft>+n_n
2 1 1 2
P Ft Ft+30
x =
n1-+ np
and
F r F
l’lz’ <—-—t+30 > - nl' <—t > + n1, - nz/
— F, Fiyzor
" n1’ + nz,
where

() indicates (1/m) Zl and

ny and n, are the number of positive and negative values of x in the unseeded sample
and n;" and n," are the corresponding values of x when a seeding factor r is assumed;
forr>1, n" > n;and n,' < n, (i.e. more positive values are produced while n; + n,
= n," + ny'). For the population of the growing cells, &, — & will be an estimate of
Mgr — Mg. In other words, p,, — p, will represent the difference between the means
of the seeded and unseeded populations for a certain seeding factor r.

The results from the simulations are very interesting in that they show that for a
given value of r, X, — X varies very little from some mean value as n increases (at the
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TaBLE 1. Typical results of the procedure for
estimating w,, — W, as a function of the
seeding factor r.

Seeding Factor ~ Sample Size Mean
N r n X, — X Value
23 0.069
41 0.068
1.1 58 0.067  0.067
80 0.067
97 0.064
23 0.223
41 0.216
1.4 58 0.221 0.218
80 0.217
97 0.212
23 0.409
41 0.389
2.0 58 0.403  0.397
80 0.396
97 0.388
23 0.517
41 0.486
2.6 58 0.506  0.500
80 0.498
97 0.490
23 0.635
41 0.591
3.8 58 0.616  0.611
80 0.611
97 0.602

most + 3%). Typical results from these simulations for the growing cases are shown
in Table 1. Since ¥ — p, and %, —> p, as n increases, the mean value of x, — x for
each value of r can be assumed to be a good estimate of ., — ., for that r. In this
way a graph of p,, — R, versus seeding factor can be constructed. The graph is
shown in Fig. 2 where it can be seen that a smooth curve fits the values of pg, — p,.
(The solid curve corresponds to the growing cases and the dashed curve to the
decaying cases.)

Similarly, an expression for o, — o, can be derived. After simulations along
similar lines, Fig. 3 shows o, — o, as a function of the seeding factor. The shape of
the curve appears somewhat unusual, but can be understood through the following
reasoning. Consider, for example, the solid curve, which corresponds to the growing
cells. For r > 1, one should expect that o, decreases and therefore o, — o,
approaches the value of o, asymptotically (i.e. 0.37). For r < 1, more negative
values are generated, so that initially the spread, o,,, will increase and o, — o, will
become zero once more. Subsequently, o, will start to decrease and o, — 0, will
increase attaining a value of 0.37 for r = 0.0. Similar arguments can be made for the
dashed curve, which corresponds to the decaying cells. The curves of Figs 2 and 3
will be used for the subsequent calculations.
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Fig. 2 Difference between the means of seeded and unseeded populations as a function of the seeding
factor r.

One can now proceed to the method of determining the number of seeded cases (n),
which will be needed to detect the seeding factors at specified significance levels. No
assumptions will be made about the exact distribution of x for the seeded or unseeded
cases. The well-known values of the means and standard deviations of the
populations of the seeded and unseeded cases will be used together with the central
limit theorem for the distribution of the mean. This implies that: a) the mean % of a
random sample of size n taken from the population of the unseeded cases will be
asymptotically normally distributed with mean w, and standard deviation og/\/n;
and b) that the mean X, of a random sample of size n taken from a seeded population of
a certain r will be asymptotically normally distributed with mean p.,, and standard
deviation ogr/\/n. As shown in Tsonis (1982) the asymptotic distribution may be
used even when 7 is as small as 5. Such a consideration can be presented graphically
asinFig. 4, which shows the distributions of the sample means for the unseeded cases
and the seeded cases with a seeding factor r; > 1. Note that N(,, og,l/\/n) is
narrower than N(j.,, 0/ n), since & ¢r, < 0, for the seeded cases. It should be noted
at this point that since the mean and standard deviation for the unseeded cases can be
accurately estimated, there is no need to consider an unseeded sample in developing
the technique. Therefore, we do not concern ourselves with tests based on the
difference between the means of seeded and unseeded samples. We are interested in
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determining the number of the seeded cases, n, such that the distributions of the
means (see Fig. 4) are narrowed at the point that we can test, at specified significance
levels, whether the seeded sample comes from the unseeded population or from a
seeded population.

Suppose that n cells were seeded and a value for the sample mean of the statistic x
was calculated and found to be ¢. The probability that the sample mean X for the
unseeded cases is greater than ¢, is given by:

* Vn
P(x>¢)=f —exp [~ (X — np)nl20 2dE
¢ V2mo, P R
or
3 b—p
P(i=d¢) =1 —z<——8) 3
(=) o /NVn @
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where:

1 ¢
Z(n = f e dy
V2w —x

Similarly, the probability that the sample mean %, of any sample from the seeded
population is greater than ¢ is given by:

d) - “‘gr) (4)

(o V'n
For positive seeding factors, if one lets P(x = ¢) = a and P(x, < ¢) = B (or P(%, =

&) = 1 — B), where «, B are the probabilities of Type I and Type II errors,
respectively, then from (3) and (4), it follows that

PG, =d)=1 —z(

d) — Mg
— = Z|_q (5)
O'g/\/; 1 .

and
¢ — Hgr
—_ 2 =z (6)
O'g,/\/l_’l b

where for a two-tail test:
Zi—q = 2.575 for a = 0.01
= 1.96 for a = 0.05
= 1.645 for a = 0.1, etc.

From (5) and (6), a formula can be obtained that will give the number of seeded cases
as a function of the seeding factor r necessary to test the null hypothesis Hy: the
seeded sample of size n comes from the unseeded population versus the alternative
that it does not. From (5), it follows that

o
(b = 21—« —£ + p‘g (7)
Vn
Using (7) and (6), it follows that
\/;[ _ Zl—(xo-g - ZBO'g,. (8)
Rgr = Mg

At this point we will restrict our test by taking a = B.
Using the fact that z, = —z,_:

n= l:zl—a (Ug + o-gr)jr
Rgr = Mg

€))

In applying (9), the values of p,, — p, as a function of seeding factor can be taken
directly from Fig. 2 and the values of o, can be obtained from Fig. 3, where o, =
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Fig. 5 Number of seeded cases required to detect a seeding factor at various significance levels.

0.37. Figure 5 shows n as a function of r (for r > 1) for « = 0.01, 0.05 and 0.1. The
arrows indicate that for increasing r, n goes asymptotically to zero and for r— 1, n—
%. If we assume that 3 > « rather than o = B, then n can be determined from (8).
Obviously, in this case n will be smaller. For negative seeding factors %, will be less
than %, and in this case one should let P(¥ = ¢) = 1 — aand P(x, = &) = B (where
again o and 3 are defined as before). Working in a similar manner, it can be found that

_ {_Zlu(o-g + Ugr):|2
Mer = Mg

As an example of the above, suppose that one seeded 100 cells and obtained a value
of ¢ equal to 0.1. Then from (5) it can be found that H,, is accepted at o = 0.01 and
rejected at = 0.05. For a = 0.05 and n = 100, Fig. 5 shows that » = 1.28. For r =
1.28, pgr = 0.27 and o, = 0.362 and (6) shows that one can accept the null
hypothesis H,': the seeded sample comes from the population with mean p,, = 0.27
and standard deviation o, = 0.362. Therefore, at a = 0.05 the statistically
significant seeding factor is 1.28.

Finally, Fig. 5 or the formulas given above can be used to reverse the question and
find the significance level at which a certain seeding factor can be detected when n
experiments are made. For example, if one seeds 50 cells and expects a seeding factor
of about 1.5 the expected significance level in estimating that seeding factor is about
0.03.

b Decaying Cells
Working on the same lines as before, similar results are obtained for the decaying
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cells. In this case for r > 1:
y [Zl—a(crd + Udr)]z
Mar = Pa

where, 4 — 4 can be taken from Fig. 2 and o, can be obtained from Fig. 3, where
04 =0.36. In general, fewer cells than before are needed. This is to be expected since
the variability of the flux in time is somewhat smaller when a cell is decaying than
when it is increasing. Thus o, and o 4, will be smaller as compared to o, and o ,, and
consequently the number of seeded cases will be smaller. For example, for r = 1.25
and a = 0.01, n = 144. In the case of the growing cells n = 194.

~For r <1, again:

n= l:_zl—a(od + O-dr):l2
Rar — Pa

Before proceeding with the discussion, it should be mentioned that the preceding
results are based on the estimated values of p,, pg, 0 and o ¢~ However, simulations
indicate that the results will not be drastically altered if the estimated values are
somewhat different. From those simulations, and as illustrated in graphs 2 and 3 if p,
=pn,' >0.12, theno,— o,’ <0.37. Accordingly, n is somewhat smaller for small
seeding effects and practically unaffected for large seeding effects. This can be
understood by examining the asymptotic behavior of ar — Mgy Mgy — Bg, Ogr + 04
and o, + o, in Figs 2 and 3. The reverse will be the case if e’ < 0.12. Therefore,
even if the parameters of the distribution are somewhat varied, the sample size
requirements will be similar to those determined above. In addition, if we had used
equations for testing the difference between the means for the seeded and unseeded
samples then we would have had:

n' = (Zl—a + Zl—ﬁ)2 (032 + 0'grz)
82

where 8 is the mean of D = X, — X. For a = it can be found that n’ is approximately
twice the order of n as given by (9).

6 Other seeding effects

The results presented up to now were obtained under the assumption that the seeding
effect is multiplicative. This assumption has been widely used in the literature, but it
is clearly possible that the seeding effect (if any) is, for example, normally distributed
or is in fact additive rather than multiplicative. These two possibilities were studied in
Tsonis (1982). It was found that the results obtained assuming the seeding factor is
distributed normally were similar to those when the seeding effect is multiplicative
and equal to the mean of the normal distribution. When the effect was assumed to be
additive the results were again of the same order as those obtained by assuming a
corresponding multiplicative effect.

7 Comparison with other statistics and some further comments

It is clear that the results seem very promising, as can be judged from the fairly small
number of seeded cases required to detect seeding effects. In Tsonis (1982) the
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comparison of results obtained with distributions that have a long tail on one or each
side shows that a larger seeded sample would be required. In some cases this is as
much as 5 times larger. To illustrate the above, a comparison with the lognormal
model is presented below. For this purpose, the data and statistic used by Biondini
(1976) will be considered. His analysis of 26 unseeded and 26 seeded clouds was
based on the statistic log R where R is the total volume of rainfall resulting from each
cloud during its lifetime. It was found that seeding affected the sample mean of the
distribution, but did not affect the sample standard deviation, i.e. s, = s, where the
subscripts u and s stand for unseeded and seeded, respectively. Under lognormality
the seeding factor can be expressed as:

= et %)

where ¥, ¥, are the sample means for the seeded and unseeded cases. Therefore %, —
x, = logr.
According to the method developed here, in this case

[ 2 Z1-a0u :|2
p=|22lmeu

log r
where it is assumed that the sample standard deviation is a good estimate of the
population’s standard deviation. Applying the above formula and taking o, = s, =
1.588 as reported by Biondini (1976), it can be verified that 4-5 times more
experiments are required than when the proposed statistic x is used. It is realized that
. the data and statistic used in this study are not similar to those used by others, and that
comparisons may not be exact. In any case, it seems that the approach presented here
is significantly more powerful, apparently because in distributions with long tails the
effect of extreme values is more pronounced, and therefore a larger seeded sample
will be needed to compensate their effect. Also, as stated above, seeding does not
affect the shape of the control distribution when that distribution has one or more tails
(Biondini, 1976; Simpson, 1972). That means that 0 ypseeded = Oseeded- 1N OUT Case
O eedeqd Will be smaller than o ypeedqeq and it will become smaller as r increases. This
will also reduce the number of seeded cases needed (see Eq. (9)).

The method presented here was based on 30-min forecasts (or 30-min flux
differences) of isolated rain cells. This choice is arbitrary but serves as a
demonstration of the method. It may very well be that statistically significant effects
will appear at different time intervals A¢. In any case, the method could be applied for
different time intervals. However, for different Ars the number of seeded cases
needed to detect seeding factors will not be the same. In general, if one assumes that
(for the growing cells, for example) o, Wg, O, and ., are functions of the time
interval At, then (9) can be expressed as

— {zl—a[cg(At) + Ugr(At)]}z
p‘gr(At) - pg(At)

Simulations show that, in general, more seeded cases are required if Az > 30 min
and less if Az < 30 min. This is to be expected since F,. 5, — F, will be larger for Az >
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30 min and smaller for Az < 30 min. Therefore, by applying the method for different
Ars, a statement about the time that the seeding needs to act can be made. Moreover,
by testing for statistically significant results at different Azs it may be possible to
determine that seeding increased the flux during the early stage and decreased it later,
with the final result that over the lifetime of the cell the total amount did not increase.
Such results might indicate that seeding accelerates the precipitation process.

In addition, the proposed method may be appropriately applied with rain-gauge
data, if the rain-gauge density is sufficient to eliminate the effects of spatial
variability. It has been demonstrated (Hildebrand et al., 1979, for example) that with
gauge densities = 1 per 100—200 km? mean convective rainfall measurements are
quite accurate. With such densities, a control area and a target area could be selected
and the proposed method could be straightforwardly adapted to that situation.

Finally, it is possible that the method proposed could be applied to areas where rain
is not falling when seeding is performed, as follows: assume a square or rectangular
area represents the area that might develop precipitation. From the cross-correlation
between two radar patterns separated by a time interval (Tsonis and Austin, 1981), or
perhaps from another method, the velocity of the radar pattern can be found. By
translating the area considered and applying the proposed statistics for both the
control and seeded samples, one can obtain results as previously.

8 Consideration of data from other sites

The results presented above were obtained using the GATE data set. The aim in this
section is to examine how data from other sites might alter the results. For this
purpose, the data from PEP mentioned in Section 2 were used. Once again, cells were
collected (as in the case of GATE) for days 83 and 108 in the 1980 PEP data set.
Fifty-six values of the statistic x for the growing cases and fifty-three for the decaying
cells were computed. Figure 6 shows the probability that x exceeds the value X
plotted as a function of X for the growing cases for GATE and PEP. As can be seen,
the cumulative distributions of x at these two places are almost identical. This



New Statistic and Technique Development for Cloud Seeding / 81

similarity may indicate that the qualitative properties of the cells are similar in both
places. Therefore, if the distributions of x are the same in both places the same results
and conclusions hold for the PEP data. The above statement may not be true for other
sites.

N
9 Conclusions

In this paper a new statistic and technique development are proposed for the design
and evaluation of cloud-seeding experiments. The statistic proposed and used here
was defined as:

= Ft+30 - Ft
max (Fl+307 Ft)

The essential properties of x are that its distribution is bounded, and that good
estimates of the mean and standard deviation of its distribution can be obtained.
Because of the boundedness and simple construction of x, it was possible to obtain
encouraging results. These results show that statistical tests can be powerful with
fairly small numbers of experimental units. For example, a seeding effect of 25%
could be detected at significance level a = 0.1 with 85 seeded cases. Comparison of
the results with those obtained by other methods indicates that the proposed method is
very promising. For demonstration purposes only, the formulation of x contains
30-min rain-flux differences. However, the technique can be applied to different Ars.
It is also possible that the method can be extended to non-precipitating clouds that
produce rain later in their lifetimes.
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